Synthesis 2021; 53(22): 4231-4238
DOI: 10.1055/s-0040-1706046
special topic
Special Issue dedicated to Prof. Sarah Reisman, recipient of the 2019 Dr. Margaret Faul Women in Chemistry Award

Synthesis of Borylated Hydrazino Acid Derivatives

Chieh-Hung Tien
Alina Trofimova
Wenjie Shao
Andrei K. Yudin
The Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged for their financial support. C.-H. T. would like to thank the Connaught Fund (University of Toronto).


α-Boryl-α-hydrazinoacetic acid is a highly functionalized boron-containing building block that can be easily accessed from readily available α-borylacetaldehyde. The hydrazine motif can be converted into a variety of α-borylated azoles and diazines in a straightforward protocol. Furthermore, the carboxy group can be derivatized to afford novel organoboron compounds that should find applications in various cross-coupling transformations.

Supporting Information

Publication History

Received: 04 April 2021

Accepted after revision: 07 May 2021

Article published online:
31 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

    • 1a Wu X, Chen X.-X, Fossey JS, James TD, Jiang Y.-B. Chem. Soc. Rev. 2013; 42: 8032
    • 1b Dimitrijević E, Taylor MS. ACS Catal. 2013; 3: 945
    • 1c Li J, Ballmer SG, Gillis EP, Fujii S, Schmidt MJ, Palazzolo AM. E, Lehmann JW, Morehouse GF, Burke MD. Science 2015; 347: 1221
    • 1d Smoum R, Rubinstein A, Dembitsky VM, Srebnik M. Chem. Rev. 2012; 112: 4156
  • 2 Diaz DB, Yudin AK. Nat. Chem. 2017; 9: 731
    • 3a Chen D, Frezza M, Schmitt S, Kanwar J, Dou D.-P. Curr. Cancer Drug Targets 2011; 11: 239
    • 3b Adams S, Miller GT, Jesson MI, Watanabe T, Jones B, Wallner BP. Cancer Res. 2004; 64: 5471
    • 3c Seavey MM, Lu LD, Stump KL, Wallace NH, Ruggeri BA. Int. Immunopharmacol. 2012; 12: 257
    • 3d Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M, Lagacé-Wiens PR. S, Walkty A, Denisuik A, Golden A, Gin AS, Hoban DJ, Lynch JP. III, Karlowsky JA. Drugs 2018; 78: 65
    • 3e Milo LJ. Jr, Lai JH, Wu W, Liu Y, Maw H, Li Y, Jin Z, Shu Y, Poplawski SE, Wu D, Sanford DG, Sudmeier JL, Bachovchin WW. J. Med. Chem. 2011; 54: 4365
    • 4a Andrés P, Ballano G, Calaza I, Cativiela C. Chem. Soc. Rev. 2016; 45: 2291
    • 4b Beenen MA, An C, Ellman JA. J. Am. Chem. Soc. 2008; 130: 6910
    • 4c Zajdlik A, Wang Z, Hickey JL, Aman A, Schimmer AD, Yudin AK. Angew. Chem. Int. Ed. 2013; 52: 8411
    • 4d Diaz DB, Scully CC. G, Liew SK, Adachi S, Trinchera P, St Denis JD, Yudin AK. Angew. Chem. Int. Ed. 2016; 55: 12659
    • 4e Shiro T, Schuhmacher A, Jackl MK, Bode JW. Chem. Sci. 2018; 9: 5191
    • 4f Reyes RL, Sato M, Iwai T, Sawamura M. J. Am. Chem. Soc. 2020; 142: 589
  • 5 Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
    • 6a Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
    • 6b Lamberth C. Heterocycles 2007; 71: 1467
    • 6c Da Costa L, Scheers E, Coluccia A, Casulli A, Roche M, Di Giorgio C, Neyts J, Terme T, Cirilli R, La Regina G, Silvestri R, Mirabelli C, Vanelle P. J. Med. Chem. 2018; 61: 8402
    • 7a Salaün A, Potel M, Roisnel T, Gall P, Le Grel P. J. Org. Chem. 2005; 70: 6499
    • 7b Acherar S, Salaün A, Le Grel P, Le Grel B, Jamart-Grégnoire B. Eur. J. Org. Chem. 2013; 2013: 5603
    • 7c Avan I, Hall CD, Katritzky AR. Chem. Soc. Rev. 2014; 43: 3575
    • 7d Suć J, Tumir L.-M, Glavaš-Obrovac L, Jukic M, Piantanida I, Jerić I. Org. Biomol. Chem. 2016; 14: 4865
    • 8a He Z, Yudin AK. J. Am. Chem. Soc. 2011; 133: 13770
    • 8b He Z, Trinchera P, Adachi S, St Denis JD, Yudin AK. Angew. Chem. Int. Ed. 2012; 51: 11092
    • 8c St Denis JD, Zajdlik A, Tan J, Trinchera P, Lee CF, He Z, Adachi S, Yudin AK. J. Am. Chem. Soc. 2014; 136: 17669
    • 8d Kaldas SJ, O’Keefe KT, Mendoza-Sanchez R, Yudin AK. Chem. Eur. J. 2017; 23: 9711
    • 8e Holownia A, Tien C.-H, Diaz DB, Larson RT, Yudin AK. Angew. Chem. Int. Ed. 2019; 58: 15148
    • 9a List B. J. Am. Chem. Soc. 2002; 124: 5656
    • 9b Bøgevig A, Kumaragurubaran N, Juhl K, Zhuang W, Jørgensen KA. Angew. Chem. Int. Ed. 2002; 41: 1790
  • 10 Based on separation by HPLC on a chiral stationary phase column (see Supporting Information), the e.r. of 6d, and thus 1 by correlation, was determined to be 60:40. Due to the almost racemic nature of 1, e.r. determination of derivatives 5 and 6 were not measured.
  • 11 Ivon YM, Mazurenko IV, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Angew. Chem. Int. Ed. 2020; 59: 18016
  • 12 Bindal S, Kumar D, Kommi DN, Bhatiya S, Chakraborti AK. Synthesis 2011; 1930
  • 13 Hou T.-C, Wu Y.-Y, Chiang P.-Y, Tan K.-T. Chem. Sci. 2015; 6: 4643