Synthesis 2021; 53(03): 447-460
DOI: 10.1055/s-0040-1706055
short review

Are Organozirconium Reagents Applicable in Current Organic Synthesis?

a  University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland   Email: ivana.nemethova@unibas.ch
,
b  Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia   Email: radovan.sebesta@uniba.sk
› Author Affiliations
This work was supported by the Agentúra na Podporu Výskumu a Vývoja (Slovak Research and Development Agency) (Grant No. APVV-18-0242).


Abstract

The search for mild, user-friendly, easily accessible, and robust organometallic reagents is an important feature of organometallic chemistry. Ideally, new methodologies employing organometallics should be developed with respect to practical applications in syntheses of target compounds. In this short review, we investigate if organozirconium reagents can fulfill these criteria. Organozirconium compounds are typically generated via in situ hydrozirconation of alkenes or alkynes with the Schwartz reagent. Alkyl and alkenylzirconium reagents have proven to be convenient in conjugate additions, allylic substitutions, cross-coupling reactions, and additions to carbonyls or imines. Furthermore, the Schwartz reagent itself is a useful reducing agent for polar functional groups.

1 Introduction

2 Synthesis and Generation of the Schwartz Reagent

3 Structure and Properties of Cp2Zr(H)Cl

4 Reactivity of Organozirconium Reagents

4.1 Asymmetric Conjugate Addition

4.2 Asymmetric Allylic Alkylations

4.3 Desymmetrization Reactions

4.4 Cross-Coupling Reactions

4.5 1,2-Additions

5 Conclusions



Publication History

Received: 16 July 2020

Accepted after revision: 03 September 2020

Publication Date:
01 October 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
  • 2 Bower JF, Kim IS, Patman RL, Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 34
  • 3 Skucas E, Ngai M.-Y, Komanduri V, Krische MJ. Acc. Chem. Res. 2007; 40: 1394
  • 4 Wailes PC, Weigold H. J. Organomet. Chem. 1970; 24: 405
  • 5 Carr DB, Schwartz J. J. Am. Chem. Soc. 1979; 101: 3521
  • 6 Buchwald SL, LaMaire SJ, Nielsen RB, Watson BT, King SM. Org. Synth. 1993; 71: 77
  • 7 Negishi E.-i, Miller JA, Yoshida T. Tetrahedron Lett. 1984; 25: 3407
  • 8 Makabe H, Negishi E.-i. Eur. J. Org. Chem. 1999; 969
  • 9 Lipshutz BH, Keil R, Eiisworth EL. Tetrahedron Lett. 1990; 31: 7257
  • 10 Huang Z, Negishi E.-i. Org. Lett. 2006; 8: 3675
  • 11 Zhao Y, Snieckus V. Org. Lett. 2014; 16: 390
  • 12 Wang Z. Schwartz Reagent. In Comprehensive Organic Name Reactions and Reagents. John Wiley & Sons; Hoboken: 2010: 2540-2543
  • 13 Kautzner B, Wailes PC, Weigold H. J. Chem. Soc. D 1969; 1105a
  • 14 Rossini AJ, Mills RW, Briscoe GA, Norton EL, Geier SJ, Hung I, Zheng S, Autschbach J, Schurko RW. J. Am. Chem. Soc. 2009; 131: 3317
  • 15 Jeff Harlan C, Bott SG, Barron AR. J. Chem. Soc., Dalton Trans. 1997; 637
  • 16 Jones CG, Asay M, Kim LJ, Kleinsasser JF, Saha A, Fulton TJ, Berkley KR, Cascio D, Malyutin AG, Conley MP, Stoltz BM, Lavallo V, Rodríguez JA, Nelson HM. ACS Cent. Sci. 2019; 5: 1507
  • 17 Luinstra GA, Rief U, Prosenc MH. Organometallics 1995; 14: 1551
  • 18 Endo J, Koga N, Morokuma K. Organometallics 1993; 12: 2777
  • 19 Hart DW, Schwartz J. J. Am. Chem. Soc. 1974; 96: 8115
  • 20 Schwartz J, Labinger JA. Angew. Chem., Int. Ed. Engl. 1976; 15: 333
  • 21 Mola L, Sidera M, Fletcher SP. Aust. J. Chem. 2015; 68: 401
  • 22 Erker G, Kropp K, Atwook JL, Hunter WE. Organometallics 1983; 2: 1555
  • 23 Labinger JA, Hart DW, Seibert WE, Schwartz J. J. Am. Chem. Soc. 1975; 97: 3851
  • 24 Hart DW, Blackburn TF, Schwartz J. J. Am. Chem. Soc. 1975; 97: 679
  • 25 Blackburn TF, Labinger JA, Schwartz J. Tetrahedron Lett. 1975; 16: 3041
  • 26 Pinheiro DL. J, de Castro PP, Amarante GW. Eur. J. Org. Chem. 2018; 4828
  • 27 Więcław MM, Stecko S. Eur. J. Org. Chem. 2018; 6601
  • 28 Berionni G, Kurouchi H, Eisenburger L, Mayr H. Chem. Eur. J. 2016; 22: 11196
  • 29 Mayr H, Patz M. Angew. Chem., Int. Ed. Engl. 1994; 33: 938
  • 30 Mayr H, Ofial AR. J. Phys. Org. Chem. 2008; 21: 584
  • 31 Corral-Bautista F, Klier L, Knochel P, Mayr H. Angew. Chem. Int. Ed. 2015; 54: 12497
  • 32 Loots MJ, Schwartz J. Tetrahedron Lett. 1978; 19: 4381
  • 33 Schwartz J, Loots MJ, Kosugi H. J. Am. Chem. Soc. 1980; 102: 1333
  • 34 Dayrit FM, Schwartz J. J. Am. Chem. Soc. 1981; 103: 4466
  • 35 Wipf P, Smitrovich JH. J. Org. Chem. 1991; 56: 6494
  • 36 Wipf P, Xu W, Smitrovich JH, Lehmann R, Venanzi LM. Tetrahedron 1994; 50: 1935
  • 37 Arnold D, Krainz T, Wipf P. Org. Synth. 2015; 92: 277
  • 38 Kakuuchi A, Taguchi T, Hanzawa Y. Tetrahedron 2004; 60: 1293
  • 39 Heravi MM, Dehghani M, Zadsirjan V. Tetrahedron: Asymmetry 2016; 27: 513
  • 40 Oi S, Sato T, Inoue Y. Tetrahedron Lett. 2004; 45: 5051
  • 41 Westmeier J, Pfaff C, Siewert J, von Zezschwitz P. Adv. Synth. Catal. 2013; 355: 2651
  • 42 Westmeier J, Kress S, Pfaff C, von Zezschwitz P. J. Org. Chem. 2013; 78: 10718
  • 43 Nicolaou KC, Tang W, Dagneau P, Faraoni R. Angew. Chem. Int. Ed. 2005; 44: 3874
  • 44 Hanzawa Y, Takebe Y, Saito A, Kakuuchi A, Fukaya H. Tetrahedron Lett. 2007; 48: 6471
  • 45 Hanzawa Y, Oka Y, Yabe M. J. Organomet. Chem. 2007; 692: 4528
  • 46 Maksymowicz RM, Roth PM. C, Fletcher SP. Nat. Chem. 2012; 4: 649
  • 47 Rideau E, Mäsing F, Fletcher SP. Synthesis 2015; 47: 2217
  • 48 Ardkhean R, Roth PM. C, Maksymowicz RM, Curran A, Peng Q, Paton RS, Fletcher SP. ACS Catal. 2017; 7: 6729
  • 49 Roth PM. C, Fletcher SP. Org. Lett. 2015; 17: 912
  • 50 Brethomé AV, Paton RS, Fletcher SP. ACS Catal. 2019; 9: 7179
  • 51 Maciver EE, Maksymowicz RM, Wilkinson N, Roth PM. C, Fletcher SP. Org. Lett. 2014; 16: 3288
  • 52 Salomon RG, Dauban P, Dodd RH. Copper(I) Trifluoromethanesulfonate. In Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons; Hoboken: 2005
  • 53 Maksymowicz RM, Roth PM. C, Thompson AL, Fletcher SP. Chem. Commun. 2013; 49: 4211
  • 54 Caprioglio D, Fletcher SP. Chem. Commun. 2015; 51: 14866
  • 55 Wu J, Kadonaga Y, Hong B, Wang J, Lei X. Angew. Chem. Int. Ed. 2019; 58: 10879
  • 56 Wang J, Hong B, Hu D, Kadonaga Y, Tang R, Lei X. J. Am. Chem. Soc. 2020; 142: 2238
  • 57 Gao Z, Fletcher SP. Chem. Commun. 2017; 53: 10216
  • 58 Gao Z, Fletcher SP. Chem. Commun. 2018; 54: 3601
  • 59 Sidera M, Roth PM. C, Maksymowicz RM, Fletcher SP. Angew. Chem. Int. Ed. 2013; 52: 7995
  • 60 Roth PM. C, Sidera M, Maksymowicz RM, Fletcher SP. Nat. Protoc 2014; 9: 104
  • 61 Ardkhean R, Mortimore M, Paton RS, Fletcher SP. Chem. Sci. 2018; 9: 2628
  • 62 Gao Z, Fletcher SP. Chem. Sci. 2017; 8: 641
  • 63 Némethová I, Bilka S, Šebesta R. J. Organomet. Chem. 2018; 856: 100
  • 64 Némethová I, Sorádová Z, Šebesta R. Synthesis 2017; 49: 2461
  • 65 Vargová D, Némethová I, Plevová K, Šebesta R. ACS Catal. 2019; 9: 3104
  • 66 Wang JY. J, Palacin T, Fletcher SP. Org. Lett. 2019; 21: 378
  • 67 Wang JY. J, Fletcher SP. Org. Lett. 2020; 22: 4103
  • 68 Mendoza A, Ishihara Y, Baran PS. Nat. Chem. 2012; 4: 21
  • 69 Vuagnoux-d’Augustin M, Alexakis A. Chem. Eur. J. 2007; 13: 9647
  • 70 Garrec K, Fletcher SP. Org. Lett. 2016; 18: 3814
  • 71 Venanzi LM, Lehmann R, Keil R, Lipshutz BH. Tetrahedron Lett. 1992; 33: 5857
  • 72 Yamanoi S, Imai T, Matsumoto T, Suzuki K. Tetrahedron Lett. 1997; 38: 3031
  • 73 Yamanoi S, Matsumoto T, Suzuki K. Tetrahedron Lett. 1998; 39: 9727
  • 74 Yamanoi S, Matsumoto T, Suzuki K. Tetrahedron Lett. 1999; 40: 2793
  • 75 Jacobsen PL, Levy L. Antimicrob. Agents Chemother. 1973; 3: 373
  • 76 Cabot MC, Goucher CR. Lipids 1981; 16: 146
  • 77 Wang J.-F, Dai H.-Q, Wei Y.-L, Zhu H.-J, Yan Y.-M, Wang Y.-H, Long C.-L, Zhong H.-M, Zhang L.-X, Cheng Y.-X. Chem. Biodivers. 2010; 7: 2046
  • 78 You H, Rideau E, Sidera M, Fletcher SP. Nature 2015; 517: 351
  • 79 Rideau E, You H, Sidera M, Claridge TD. W, Fletcher SP. J. Am. Chem. Soc. 2017; 139: 5614
  • 80 Rideau E, Fletcher SP. Beilstein J. Org. Chem. 2015; 11: 2435
  • 81 Karabiyikoglu S, Brethomé AV, Palacin T, Paton RS, Fletcher SP. Chem. Sci. 2020; 11: 4125
  • 82 Sidera M, Fletcher SP. Chem. Commun. 2015; 51: 5044
  • 83 Wu M.-S, Jeganmohan M, Cheng C.-H. J. Org. Chem. 2005; 70: 9545
  • 84 Wu M.-S, Rayabarapu DK, Cheng C.-H. J. Org. Chem. 2004; 69: 8407
  • 85 Jacques R, Pullin RD. C, Fletcher SP. Nat. Commun. 2019; 10: 21
  • 86 Gao Y, Yang C, Bai S, Liu X, Wu Q, Wang J, Jiang C, Qi X. Chem 2020; 6: 675
  • 87 Yang C, Gao Y, Bai S, Jiang C, Qi X. J. Am. Chem. Soc. 2020; 142: 11506
  • 88 Zheng B, Deloux L, Pereira S, Skrzypczak-Jankun E, Cheesman BV, Sabat M, Srebnik M. Appl. Organomet. Chem. 1996; 10: 267
  • 89 Zheng B, Deloux L, Skrzypczak-Jankun E, Cheesman BV, Pereira S, Srebnik M, Sabat M. J. Mol. Struct. 1996; 374: 291
  • 90 Indukuri K, Riant O. Adv. Synth. Catal. 2017; 359: 2425
  • 91 Moss M, Han X, Ready JM. Angew. Chem. Int. Ed. 2016; 55: 10017
  • 92 Daini M, Yamamoto A, Suginome M. J. Am. Chem. Soc. 2008; 130: 2918
  • 93 Daini M, Suginome M. J. Am. Chem. Soc. 2011; 133: 4758
  • 94 Daini M, Yamamoto A, Suginome M. Asian J. Org. Chem. 2013; 2: 968
  • 95 Lou S, Fu GC. J. Am. Chem. Soc. 2010; 132: 5010
  • 96 Schwaebe MK, McCarthy JR, Whitten JP. Tetrahedron Lett. 2000; 41: 791
  • 97 Ferreri C, Palumbo G, Caputo R. Organotitanium and Organozirconium Reagents . In Comprehensive Organic Synthesis, Vol. 1. Pergamon; Oxford: 1991: 139-172
  • 98 Solà R, Veguillas M, González-Soria MJ, Carter N, Fernández-Ibáñez MA, Maciá B. Molecules 2018; 23: 961
  • 99 Némethová I, Vargová D, Mudráková B, Filo J, Šebesta R. J. Organomet. Chem. 2020; 908: 121099
  • 100 Vargová D, Mudráková B, Némethová I, Šebesta R. Eur. J. Org. Chem. 2019; 7606
  • 101 Li H, Walsh PJ. J. Am. Chem. Soc. 2005; 127: 8355
  • 102 Murakami T, Furusawa K. Tetrahedron 2002; 58: 9257
  • 103 Leichnitz D, Pflanze S, Beemelmanns C. Org. Biomol. Chem. 2019; 17: 6964
  • 104 Wipf P, Jayasuriya N. Chirality 2008; 20: 425
  • 105 Abad JL, Nieves I, Rayo P, Casas J, Fabriàs G, Delgado A. J. Org. Chem. 2013; 78: 5858
  • 106 Wipf P, Xiao J, Geib SJ. Adv. Synth. Catal. 2005; 347: 1605
  • 107 Wipf P, Janjic J, Stephenson CR. J. Org. Biomol. Chem. 2004; 2: 443
  • 108 Wipf P, Kendall C, Stephenson CR. J. J. Am. Chem. Soc. 2003; 125: 761
  • 109 Skoda EM, Davis GC, Wipf P. Org. Process Res. Dev. 2012; 16: 26
  • 110 Coffinet M, Jaroschik F, Vasse J.-L. Eur. J. Org. Chem. 2016; 2319
  • 111 Trost BM, Hung C.-I, Koester DC, Miller Y. Org. Lett. 2015; 17: 3778
  • 112 Maliszewski B, Bauer T. Adv. Synth. Catal. 2019; 361: 3689
  • 113 Wipf P, Ribe S. J. Org. Chem. 1998; 63: 6454