Synthesis 2021; 53(03): 498-508
DOI: 10.1055/s-0040-1706478
feature

Synthesis of the 26-Membered Core of Thiopeptide Natural Products by Scalable Thiazole-Forming Reactions of Cysteine Derivatives and Nitriles

Trevor C. Johnson
a   Department of Chemistry & Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
,
Mitchell P. Christy
a   Department of Chemistry & Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
,
Dionicio Siegel
b   Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States   Email: drsiegel@health.ucsd.edu
› Author Affiliations
We would like to thank the NIH/NCI Training Grant (T32 CA009523) and UC San Diego for funding this project.


Abstract

The increased resistance of bacteria to clinical antibiotics is one of the major dilemmas facing human health and without solutions the problem will grow exponentially worse. Thiopeptide natural products have shown promising antibiotic activities and provide an opportunity for the development of a new class of antibiotics. Attempts to directly translate these compounds into human medicine have been limited due to poor physiochemical properties. The synthesis of the core structure of the 26-membered class of thiopeptide natural products is reported using chemistry that enables the synthesis of large quantities of synthetic intermediates and the common core structure. The use of cysteine/nitrile condensation reactions followed by oxidation to generate thiazoles has been key in enabling large academic scale reactions that in many instances avoided chromatography further aiding in accessing large amounts of key synthetic intermediates.

Supporting Information



Publication History

Received: 15 July 2020

Accepted after revision: 31 August 2020

Article published online:
15 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 https://www.cdc.gov/drugresistance/ (accessed Sept. 29, 2020).
    • 2a Tanaka T, Endo T, Shimazu A, Yoshida R, Suzuki Y. J. Antibiot. 1970; 23: 231
    • 2b Endo T, Yonehara H. J. Antibiot. 1978; 31: 623
  • 3 Cundliffe E, Thompson J. J. Gen. Microbiol. 1981; 126: 185
  • 4 Haste NM, Thienphrapa W, Tran DN, Loesgen S, Sun P, Nam SJ, Jensen PR, Fenical W, Sakoulas G, Nizet V, Hensler ME. J. Antibiot. 2012; 65: 593
  • 5 Benazet F, Cartier M, Florent J, Godard C, Jung G, Lunel J, Mancy D, Pascal C, Renaut J, Tarridec P, Theilleux J, Tissier R, Dubost M, Ninet L. Experientia 1980; 36: 414
  • 6 Cromwell GL, Stahly TS, Speer VC, O’Kelly R. J. Anim. Sci. 1984; 59: 1125
    • 7a Just-Baringo X, Albericio F, Alvarez M. Marine Drugs 2014; 12: 317
    • 7b Bagley MC, Dale JW, Merritt EA, Xiong A. Chem. Rev. 2005; 105: 685
    • 7c Hughes RA, Moody CJ. Angew. Chem. Int. Ed. 2007; 46: 7930
  • 8 Just-Baringo X, Albericio F, Alvarez M. Angew. Chem. Int. Ed. 2014; 53: 6602
  • 9 Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J, Mitreva M, Clardy J, Linington RG, Fischbach MA. Cell 2014; 158: 1402
  • 10 Kazami JO. T, Watanabe M, Kamigiri K, Yamaguchi T, Tatsuta K. WO2007049582 A1, 2007
    • 11a Acker MG, Bowers AA, Walsh CT. J. Am. Chem. Soc. 2009; 131: 17563
    • 11b Bowers AA, Acker MG, Koglin A, Walsh CT. J. Am. Chem. Soc. 2010; 132: 7519
    • 11c Li CX, Zhang FF, Kelly WL. Mol. Biosyst. 2011; 7: 82
    • 11d Li CX, Zhang FF, Kelly WL. Chem. Commun. 2012; 48: 558
  • 12 Bowers AA, Acker MG, Young TS, Walsh CT. J. Am. Chem. Soc. 2012; 134: 10313
    • 13a Baumann S, Schoof S, Bolten M, Haering C, Takagi M, Shin-ya K, Arndt HD. J. Am. Chem. Soc. 2010; 132: 6973
    • 13b Zhang CW, Occi J, Masurekar P, Barrett JF, Zink DL, Smith S, Onishi R, Ha SH, Salazar O, Genilloud O, Basilio A, Vicente F, Gill C, Hickey EJ, Dorso K, Motyl M, Singh SB. J. Am. Chem. Soc. 2008; 130: 12102
    • 13c Singh SB, Zhang CW, Zink DL, Herath K, Ondeyka J, Masurekar P, Jayasuriya H, Goetz MA, Tormo JR, Vicente F, Martin J, Gonzalez I, Genilloud O. J. Antibiot. 2013; 66: 599
    • 14a Nicolaou KC, Zak M, Safina BS, Estrada AA, Lee SH, Nevalainen M. J. Am. Chem. Soc. 2005; 127: 11176
    • 14b Nicolaou KC, Safina BS, Zak M, Lee SH, Nevalainen M, Bella M, Estrada AA, Funke C, Zecri FJ, Bulat S. J. Am. Chem. Soc. 2005; 127: 11159
    • 14c Nicolaou KC, Safina BS, Zak M, Estrada AA, Lee SH. Angew. Chem. Int. Ed. 2004; 43: 5087
    • 14d Nicolaou KC, Zak M, Safina BS, Lee SH, Estrada AA. Angew. Chem. Int. Ed. 2004; 43: 5092
  • 15 Wojtas KP, Riedrich M, Lu JY, Winter P, Winkler T, Walter S, Arndt HD. Angew. Chem. Int. Ed. 2016; 55: 9772
    • 16a Bentley DJ, Fairhurst J, Gallagher PT, Manteuffel AK, Moody CJ, Pinder JL. Org. Biomol. Chem. 2004; 2: 701
    • 16b Lu JY, Arndt HD. J. Org. Chem. 2007; 72: 4205
    • 16c Lu JY, Riedrich M, Mikyna M, Arndt HD. Angew. Chem. Int. Ed. 2009; 48: 8137
    • 16d Lu JY, Riedrich M, Wojtas KP, Arndt HD. Synthesis 2013; 45: 1300
    • 17a Muller HM, Delgado O, Bach T. Angew. Chem. Int. Ed. 2007; 46: 4771
    • 17b Lefranc D, Ciufolini MA. Angew. Chem. Int. Ed. 2009; 48: 4198
    • 17c Hughes RA, Thompson SP, Alcaraz L, Moody CJ. J. Am. Chem. Soc. 2005; 127: 15644
    • 17d Aulakh VS, Ciufolini MA. J. Am. Chem. Soc. 2011; 133: 5900
    • 17e Just-Baringo X, Bruno P, Ottesen LK, Canedo LM, Albericio F, Alvarez M. Angew. Chem. Int. Ed. 2013; 52: 7818
    • 17f Akasapu S, Hinds AB, Powell WC, Walczak MA. Chem. Sci. 2019; 10: 1971
  • 18 Christy MP, Johnson T, McNerlin CD, Woodard J, Nelson AT, Lim B, Hamilton TL, Freiberg KM, Siegel D. Org. Lett. 2020; 22: 2365
  • 19 White EH, Field GF, McCapra F. J. Am. Chem. Soc. 1963; 85: 337
  • 20 Martinez V, Davyt D. Tetrahedron: Asymmetry 2013; 24: 1572
  • 21 Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600
  • 22 Ferreira PT, Maia HS, Monteiro L. J. Chem. Soc., Perkin Trans. 1 1999; 3697
  • 23 Caron S, Do NM, Sieser JE. Tetrahedron Lett. 2000; 41: 2299
  • 24 Kopp F, Wunderlich S, Knochel P. Chem. Commun. 2007; 2075
  • 25 LaMarche MJ, Leeds JA, Amaral A, Brewer JT, Bushell SM, Deng G, Dewhurst JM, Ding J, Dzink-Fox J, Gamber G, Jain A, Lee K, Lee L, Lister T, McKenney D, Mullin S, Osborne C, Palestrant D, Patane MA, Rann EM, Sachdeva M, Shao J, Tiamfook S, Trzasko A, Whitehead L, Yifru A, Yu D, Yan W, Zhu Q. J. Med. Chem. 2012; 55: 2376