Synthesis 2020; 52(19): 2731-2760
DOI: 10.1055/s-0040-1707123
review
© Georg Thieme Verlag Stuttgart · New York

Pd-Catalyzed Domino Reactions Involving Alkenes To Access Substituted Indole Derivatives

Michael S. Christodoulou
a   DISFARM, Sezione di Chimica Generale e Organica ‘A. Marchesini’ Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy   Email: michail.christodoulou@unimi.it   Email: egle.beccalli@unimi.it   Email: sabrina.giofre@unimi.it
,
a   DISFARM, Sezione di Chimica Generale e Organica ‘A. Marchesini’ Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy   Email: michail.christodoulou@unimi.it   Email: egle.beccalli@unimi.it   Email: sabrina.giofre@unimi.it
,
Francesca Foschi
b   Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, via Valleggio 11, 22100, Como, Italy   Email: francesca.foschi@uninsubria.it
,
Sabrina Giofrè
a   DISFARM, Sezione di Chimica Generale e Organica ‘A. Marchesini’ Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy   Email: michail.christodoulou@unimi.it   Email: egle.beccalli@unimi.it   Email: sabrina.giofre@unimi.it
› Author Affiliations
This work was supported by Università degli Studi di Milano under ‘Piano di sostegno alla ricerca 2019, Linea 2’ (annual allocation for institutional activities).
Further Information

Publication History

Received: 04 March 2020

Accepted after revision: 28 April 2020

Publication Date:
26 May 2020 (online)


Abstract

Palladium-catalyzed domino reactions are advanced tools in achieving various nitrogen-containing heterocycles in an efficient and economical manner due to the reduced number of steps in the process. This review highlights recent advances in domino processes aimed at the synthesis of indole derivatives and polycyclic systems containing the indole nucleus in intra/intra- or intra/intermolecular reactions. In particular, we consider domino processes that involve a double bond in a step of the sequence, which allow the issue of regioselectivity in the cyclization to be faced and overcome. The different sections in this review focus on the synthesis of the indole nucleus and functionalization of the scaffold starting from different substrates that have been identified as activated starting materials, which involve a halogenated moiety or unactivated unsaturated systems. In the former case, the reaction is under Pd(0) catalysis, and in the second case a Pd(II) catalytic species is required and then an oxidant is necessary to reconvert the Pd(0) into the active Pd(II) species. On the other hand, the second method has the advantage that it uses easy available and inexpensive substrates.

1 Introduction

2 Indole Scaffold Synthesis

2.1 Activated Substrates

2.2 Unactivated Substrates

3 Functionalization of Indole Scaffold

3.1 Activated Substrates

3.2 Unactivated Substrates

4 Conclusions

 
  • References


    • For selected reviews on cascade reactions, see:
    • 3a Zeng X. Chem. Rev. 2013; 113: 6864
    • 3b Pellissier H. Chem. Rev. 2013; 113: 442
    • 3c Vlaar T, Ruijter E, Orru RV. A. Adv. Synth. Catal. 2011; 353: 809
    • 3d Ackermann L, Sandmann R, Schinkel M, Kondrashov MV. Tetrahedron 2009; 65: 8930
    • 3e Felpin FX, Fouquet E. ChemSusChem 2008; 1: 718
    • 3f Patil N, Yamamoto Y. Top. Organomet. Chem. 2006; 19: 91
    • 3g Tietze LF, Brasche G, Gericke K. In Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
    • 3h Tietze LF, Beifuss U. Angew. Chem. Int. Ed. Engl. 1993; 32: 131
    • 3i Lu L.-Q, Chen JR, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 3j Nicolaou KC, Edmonds DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 3k Tietze LF. Chem. Rev. 1996; 96: 115
    • 3l Döndaş HA, de Gracia Retamosa M, Sansano JM. Organometallics 2019; 38: 1828
    • 3m Blouin S, Blond G, Donnard M, Gulea M, Suffert J. Synthesis 2017; 49: 1767
    • 3n Mehta VP, García-López J.-A. ChemCatChem 2017; 9: 1149
    • 3o Ping Y, Li Y, Zhu J, Kong W. Angew. Chem. Int. Ed. 2019; 58: 1562
    • 4a Platon M, Amardeil R, Djakovitch L, Hierso JC. Chem. Soc. Rev. 2012; 41: 3929
    • 4b Barluenga J, Rodréguez F, Fañáns FJ. Chem. Asian J. 2009; 4: 1036
  • 5 Jensen T, Pedersen H, Bang-Andersen B, Madsen R, Jørgensen M. Angew. Chem. Int. Ed. 2008; 47: 888
  • 6 Baxter CA, Cleator E, Alam M, Davies AJ, Goodyear A, O’Hagan M. Org. Lett. 2010; 12: 668
  • 7 Chen D, Chen Y, Ma Z, Zou L, Li J, Liu Y. J. Org. Chem. 2018; 83: 6805
  • 8 Solé D, Pérez-Janer F, Zulaica E, Guastavino JF, Fernández I. ACS Catal. 2016; 6: 1691
  • 9 Zhang B.-S, Li Y, Zhang Z, An Y, Wen Y.-H, Gou X.-Y, Quan S.-Q, Wang X.-G, Liang Y.-M. J. Am. Chem. Soc. 2019; 141: 9731
  • 10 Candito DA, Lautens M. Org. Lett. 2010; 12: 3312
  • 11 Zheng H, Zhu Y, Shi Y. Angew. Chem. Int. Ed. 2014; 53: 11280
  • 12 Paraja M, Valdés C. Chem. Commun. 2016; 52: 6312
  • 13 Fuwa H, Sasaki M. J. Org. Chem. 2009; 74: 212
  • 14 Tengho Toguem S.-M, Langer P. Synlett 2011; 513
  • 15 Felpin F.-X, Ibarguren O, Nassar-Hardy L, Fouquet E. J. Org. Chem. 2009; 74: 1349
  • 16 Chen S.-S, Meng J, Li Y.-H, Han Z.-Y. J. Org. Chem. 2016; 81: 9402
  • 17 Toppino A, Arru P, Bianco N, Prandi C, Venturello P, Deagostino A. Eur. J. Org. Chem. 2013; 6990
  • 18 Yang J, Mo H, Jin X, Cao D, Wu H, Chen D, Wang Z. J. Org. Chem. 2018; 83: 2592
  • 19 Hyde AM, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 177
  • 20 Liu Y, Huang Y, Song H, Liu Y, Wang Q. Chem. Eur. J. 2015; 21: 5337
  • 21 Arichi N, Yamada KI, Yamaoka Y, Takasu K. J. Am. Chem. Soc. 2015; 137: 9579
    • 22a Gao Y, Xiong W, Chen H, Wu W, Peng J, Gao Y, Jiang H. J. Org. Chem. 2015; 80: 7456
    • 22b Liu X, Ma X, Huang Y, Gu Z. Org. Lett. 2013; 15: 4814
    • 23a Newman SG, Lautens M. J. Am. Chem. Soc. 2011; 133: 1778
    • 23b Petrone DA, Lischka M, Lautens M. Angew. Chem. Int. Ed. 2013; 52: 10635
  • 24 Yamamoto K, Qureshi Z, Tsoung J, Pisella G, Lautens M. Org. Lett. 2016; 18: 4954
  • 25 Lu A, Ji X, Zhou B, Wu Z, Zhang Y. Angew. Chem. Int. Ed. 2018; 57: 3233
  • 26 Cacchi S, Fabrizi G, Goggiamani A, Sferrazza A. Org. Biomol. Chem. 2011; 9: 1727
  • 27 Ye J, Shi Z, Sperger T, Yasukawa Y, Kingston C, Schoenebeck F, Lautens M. Nat. Chem. 2017; 9: 361
  • 28 Kong W, Wang Q, Zhu J. J. Am. Chem. Soc. 2015; 137: 16028
  • 29 Wu XX, Liu A, Mou M, Chen H, Chen S. J. Org. Chem. 2018; 83: 14181
    • 30a Yoon H, Lossouarn A, Landau F, Lautens M. Org. Lett. 2016; 18: 6324
    • 30b García-López J.-A, Pérez-Gómez M. Angew. Chem. Int. Ed. 2016; 55: 14389
  • 31 Shao C, Wu Z, Ji X, Zhou B, Zhang Y. Chem. Commun. 2017; 53: 10429
  • 32 Yoon H, Rölz M, Landau F, Lautens M. Angew. Chem. Int. Ed. 2017; 56: 10920
  • 33 Rodríguez JF, Marchese AD, Lautens M. Org. Lett. 2018; 20: 4367
  • 34 Pérez-Gómez M, Hernández-Ponte S, Bautista D, García-López JA. Chem. Commun. 2017; 53: 2842
  • 35 Liu JG, Chen WW, Gu CX, Xu B, Xu MH. Org. Lett. 2018; 20: 2728
  • 36 Piou T, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2012; 51: 11561
  • 37 Ruck RT, Huffman MA, Kim MM, Shevlin M, Kandur WV, Davies IW. Angew. Chem. Int. Ed. 2008; 47: 4711
  • 38 Jaegli S, Erb W, Retailleau P, Vors J.-P, Neuville L, Zhu J. Chem. Eur. J. 2010; 16: 5863
  • 39 Millington EL, Dondas HA, Fishwick CW. G, Kilner C, Grigg R. Tetrahedron 2018; 74: 3564
  • 40 Wang JY, Su YM, Yin F, Bao Y, Zhang X, Xu YM, Wang XS. Chem. Commun. 2014; 50: 4108
  • 41 Guo S, Li P, Guan Z, Cai L, Chen S, Lin A, Yao H. Org. Lett. 2019; 21: 921
  • 42 Hédouin J, Carpentier V, Renard RM. Q, Schneider C, Gillaizeau I, Hoarau C. J. Org. Chem. 2019; 84: 10535
    • 43a Nemoto T. Chem. Rec. 2019; 19: 320
    • 43b Nakano SI, Inoue N, Hamada Y, Nemoto T. Org. Lett. 2015; 17: 2622
    • 43c Inoue N, Nakano S.-i, Harada S, Hamada Y, Nemoto T. J. Org. Chem. 2017; 82: 2787
    • 43d Nakano S.-i, Hamada Y, Nemoto T. Tetrahedron Lett. 2018; 59: 760
  • 44 Masters KS, Wallesch M, Bräse S. J. Org. Chem. 2011; 76: 9060
  • 45 Hédouin J, Schneider C, Gillaizeau I, Hoarau C. Org. Lett. 2018; 20: 6027
  • 46 Kamisaki H, Nanjo T, Tsukano C, Takemoto Y. Chem. Eur. J. 2011; 17: 626
  • 47 Álvarez R, Martínez C, Madich Y, Denis JG, Aurrecoechea JM, de Lera ÁR. Chem. Eur. J. 2010; 16: 12746
  • 48 Janreddy D, Kavala V, Kuo C.-W, Kuo T.-S, He C.-H, Yao C.-F. Tetrahedron 2013; 69: 3323
  • 49 Reddy V, Vijaya Anand R. Org. Lett. 2015; 17: 3390
  • 50 Denis JG, Franci G, Altucci L, Aurrecoechea JM, de Lera ÁR, Álvarez R. Org. Biomol. Chem. 2015; 13: 2800
  • 51 Yip K.-T, Zhu N.-Y, Yang D. Org. Lett. 2009; 11: 1911
  • 52 Xu J, Wipf P. Org. Biomol. Chem. 2017; 15: 7093
  • 53 Cooper SP, Booker-Milburn KI. Angew. Chem. Int. Ed. 2015; 54: 6496
  • 54 Guo T, Jiang Q, Yu Z. Org. Chem. Front. 2015; 2: 1361
  • 55 Lira R, Wolfe JP. J. Am. Chem. Soc. 2004; 126: 13906
  • 56 Sharma U, Kancherla R, Naveen T, Agasti S, Maiti D. Angew. Chem. Int. Ed. 2014; 53: 11895
  • 57 Manna MK, Hossian A, Jana R. Org. Lett. 2015; 17: 672
  • 58 Houlden CE, Bailey CD, Ford JG, Gagné MR, Lloyd-Jones GC, Booker-Milburn KI. J. Am. Chem. Soc. 2008; 130: 10066
  • 59 Chen S.-S, Wu M.-S, Han Z.-Y. Angew. Chem. Int. Ed. 2017; 56: 6641
  • 60 Karnakanti S, Zang ZL, Zhao S, Shao PL, Hu P, He Y. Chem. Commun. 2017; 53: 11205
  • 61 Mu X, Wu T, Wang HY, Guo YL, Liu G. J. Am. Chem. Soc. 2012; 134: 878
  • 62 Boothe JR, Shen Y, Wolfe JP. J. Org. Chem. 2017; 82: 2777
  • 63 Stewart SG, Heath CH, Ghisalberti EL. Eur. J. Org. Chem. 2009; 1934
  • 64 Priebbenow DL, Henderson LC, Pfeffer FM, Stewart SG. J. Org. Chem. 2010; 75: 1787
  • 65 Hussain M, Tengho Toguem S.-M, Ahmad R, Thanh Tùng D, Knepper I, Villinger A, Langer P. Tetrahedron 2011; 67: 5304
  • 66 Wang M, Zhang X, Zhuang Y.-X, Xu Y.-H, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 1341
  • 67 Huang Q, Larock RC. Tetrahedron Lett. 2009; 50: 7235
  • 68 Yang X, Lu H, Zhu X, Zhou L, Guobo D, Yang Y, Liang Y. Org. Lett. 2019; 21: 7284
  • 69 Hou L, Wang Y, Tong X. Tetrahedron Lett. 2018; 59: 1804
  • 70 Zeidan N, Beisel T, Ross R, Lautens M. Org. Lett. 2018; 20: 7332
  • 71 Prasad B, Sreenivas BY, Krishna GR, Kapavarapu R, Pal M. Chem. Commun. 2013; 49: 6716
  • 72 Zhang Z.-X, Chen S.-C, Jiao L. Angew. Chem. Int. Ed. 2016; 55: 8090
  • 73 Gao RD, Xu Q.-L, Zhang B, Gu Y, Dai L.-X, You S.-L. Chem. Eur. J. 2016; 22: 11601
  • 74 Beccalli EM, Bernasconi A, Borsini E, Broggini G, Rigamonti M, Zecchi G. J. Org. Chem. 2010; 75: 6923
    • 75a Inuki S, Iwata A, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2011; 76: 2072
    • 75b Iwata A, Inuki S, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2011; 76: 5506
  • 76 Guo T, Jiang Q, Huang F, Chen J, Yu Z. Org. Chem. Front. 2014; 1: 707
  • 77 Verma AK, Danodia AK, Saunthwal RK, Patel M, Choudhary D. Org. Lett. 2015; 17: 3658
  • 78 Ferreira EM, Stoltz BM. J. Am. Chem. Soc. 2003; 125: 9578
    • 79a Saunthwal RK, Patel M, Kumar S, Danodia AK, Verma AK. Chem. Eur. J. 2015; 21: 18601
    • 79b Saunthwal RK, Saini KM, Patel M, Verma AK. Tetrahedron 2017; 73: 2415
    • 80a Liu Z, Zeng T, Yang KS, Engle KM. J. Am. Chem. Soc. 2016; 138: 15122
    • 80b Liu Z, Wang Y, Wang Z, Zeng T, Liu P, Engle KM. J. Am. Chem. Soc. 2017; 139: 11261
  • 81 Gao R.-D, Xu Q.-L, Dai L.-X, You S.-L. Org. Biomol. Chem. 2016; 14: 8044
  • 82 Broggini G, Barbera V, Beccalli EM, Borsini E, Galli S, Lanza G, Zecchi G. Adv. Synth. Catal. 2012; 354: 159
  • 83 Wang H, Zhou ZX, Kurmoo M, Liu YJ, Zeng MH. Org. Lett. 2019; 21: 2847
  • 84 Watt MS, Booker-Milburn KI. Org. Lett. 2016; 18: 5716
  • 85 Glaisyer EL, Watt MS, Booker-Milburn KI. Org. Lett. 2018; 20: 5877
  • 86 Li DY, Wang A, Zhu XP, Feng W, Liu P.-N. Chem. Commun. 2019; 55: 3339
  • 87 Montgomery TD, Zhu Y, Kagawa N, Rawal VH. Org. Lett. 2013; 15: 1140
  • 88 Li N.-K, Zhang J.-Q, Sun B.-B, Li H.-Y, Wang X.-W. Org. Lett. 2017; 19: 1954