Synthesis 2020; 52(21): 3243-3252
DOI: 10.1055/s-0040-1707132
special topic
© Georg Thieme Verlag Stuttgart · New York

Highly Selective Synthesis of α-Hydroxy, α-Oxy, and α-Oxo Amides by a Post-Passerini Condensation Transformation

Morteza Shiri
a   Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran   Email: mshiri@alzahra.ac.ir
,
Zahra Gholami-Koupaei
a   Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran   Email: mshiri@alzahra.ac.ir
,
Farzaneh Bandehali-Naeini
a   Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran   Email: mshiri@alzahra.ac.ir
,
Maryam-Sadat Tonekaboni
a   Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran   Email: mshiri@alzahra.ac.ir
,
Saeedeh Soheil-Moghaddam
a   Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran   Email: mshiri@alzahra.ac.ir
,
Delaram Ebrahimi
a   Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran   Email: mshiri@alzahra.ac.ir
,
Sima Karami
a   Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran   Email: mshiri@alzahra.ac.ir
,
Behrouz Notash
b   Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran
› Author Affiliations
The Alzahra University and the Iran National Science Foundation (INSF­) are gratefully acknowledged for support.
Further Information

Publication History

Received: 19 April 2020

Accepted after revision: 06 May 2020

Publication Date:
08 June 2020 (online)


Published as part of the Special Topic Recent Advances in Amide Bond Formation

Abstract

A post-Passerini condensation transformation can be employed in the synthesis of three types of amides: α-hydroxy, α-oxy, and α-oxo amides. K2CO3 efficiently promotes the solvolysis of α-acetoxy amides to form α-hydroxy amides in methanol. 2-Acetoxy-2-(2-alkynyl­quinolin-3-yl)acetamides in basic methanol are cyclized to 1,3-dihydrofuro[3,4-b]quinoline-1-carboxamides via deacetylation and 5-exo-dig cyclization. Treatment of 2-hydroxy-2-[2-(phenylethynyl)quinolin-3-yl]acetamides with I2 in basic media produces pyrrolo[2,3-b]quinoline-2,3-diones. This cyclization involves intramolecular cyclization, dealkynylative aromatization, and oxidation of the secondary alcohol.

Supporting Information

 
  • References

    • 1a Challis BC, Challis J. In The Chemistry of Amides . Zabicky J. John Wiley & Sons; London: 1970: 731
    • 1b Sewald N, Jakubke H.-D. Peptides: Chemistry and Biology . Wiley-VCH; Weinheim: 2002
    • 1c Zheng Q, Liu C.-F, Chen J, Rao G.-W. Adv. Synth. Catal. 2020; 362: 1406
    • 1d Ojeda-Porras A, Gamba-Sánchez D. J. Org. Chem. 2016; 81: 11548
    • 1e Wan J.-P, Jing Y. Beilstein J. Org. Chem. 2015; 11: 2209
    • 1f Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 7453
    • 1g Hao D, Meifang H. Chin. J. Org. Chem. 2017; 37: 267
    • 1h Salehi P, Shiri M. Adv. Synth. Catal. 2019; 361: 118
    • 2a Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
    • 2b Albrecht BK, Williams RM. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 11949
    • 2c Zhang M, Imm S, Bahn S, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 47: 11197
    • 2d Bette V, Mortreux A, Lehmann CW, Carpentier J.-F. Chem. Commun. 2003; 332
    • 2e Vilhelmsen MH, Østergaard LF, Nielsen MB, Hammerum S. Org. Biomol. Chem. 2008; 6: 1773
    • 2f Huang M, Zhong S, Xu M, Liu Y. J. Chem. Res. 2015; 39: 274
    • 2g Lingaswamy K, Mohan D, Krishna PR, Prapurna YL. Synlett 2016; 27: 1693
    • 2h Pluta R, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2019; 58: 2459
    • 3a Domling A. Chem. Rev. 2006; 106: 17
    • 3b Koopmanschap G, Ruijter E, Orru RV. A. Beilstein J. Org. Chem. 2014; 10: 544
    • 3c Multicomponent Reactions. Zhu J, Bienayme H. Wiley-VCH; Weinheim: 2005
    • 3d van Berkel SS, Bögels BG. M, Wijdeven MA, Westermann B, Rutjes FP. J. T. Eur. J. Org. Chem. 2012; 3543
    • 3e Ugi I. Pure Appl. Chem. 2001; 73: 187
    • 3f Váradi A, Palmer TC, Dardashti RN, Majumdar S. Molecules 2016; 21: 19
    • 3g Shaabani A, Maleki A, Rezayan AH, Sarvary A. Mol. Divers. 2011; 15: 41
    • 3h Shiri M. Chem. Rev. 2012; 112: 3508
  • 4 Passerini LS. M. Gazz. Chim. Ital. 1921; 51: 126
    • 5a Banfi L, Riva R. The Passerini Reaction . In Organic Reactions, Vol. 65. Charette AB. John Wiley & Sons; Hoboken: 2005: 1-140
    • 5b Chandgude A. Dissertation . University of Groningen; Germany: 2017
    • 5c Multicomponent Reactions. Zhu J, Bienayme H. Wiley-VCH; Weinheim: 2005: 33-75
    • 6a Schiess M, Seebach D. Helv. Chim. Acta 1983; 66: 1618
    • 6b Carofiglio T, Cozzi PG, Floriani C, Chiesivilla A, Rizzoli C. Organometallics 1993; 12: 2726
    • 6c Carofiglio T, Floriani C, Chiesivilla A, Guastini C. Inorg. Chem. 1989; 28: 4417
    • 6d Carofiglio T, Floriani C, Chiesivilla A, Rizzoli C. Organometallics 1991; 10: 1659
  • 7 Soeta T, Kojima Y, Ukaji Y, Inomata K. Tetrahedron Lett. 2011; 52: 2557
  • 8 Kumar JS, Jonnalagadda SC, Mereddy VR. Tetrahedron Lett. 2010; 51: 779
  • 9 Carrillo RM, Neo AG, Lopez-Garcia L, Marcaccini S, Marcos CF. Green Chem. 2006; 8: 787
    • 10a Semple JE, Owens TD, Nguyen K, Levy OE. Org. Lett. 2000; 2: 2769
    • 10b Banfi L, Guanti G, Riva R. Chem. Commun. 2000; 985
  • 11 Basso A, Banfi L, Guanti G, Riva R, Tosatti P. Synlett 2011; 22: 2009
  • 12 Ben Abdessalem A, Abderrahim R, El Kaim L. Synlett 2015; 26: 2537
    • 13a Tanbakouchian Z, Zolfigol MA, Notash B, Ranjbar M, Shiri M. Appl. Organomet. Chem. 2019; 33: e5024
    • 13b Shiri M, Heravi MM, Zadsirjan V, Ghiasi M, Shintre SA, Koorbanally NA. J. Iran. Chem. Soc. 2019; 16: 1517
    • 13c Yasaei Z, Mohammadpour Z, Shiri M, Tanbakouchian Z, Fazelzadeh S. Front. Chem. 2019; 7: 433
    • 13d Shiri M, Ranjbar M, Yasaei Z, Zamanian F, Notash B. Org. Biomol. Chem. 2017; 15: 10073
    • 13e Zadsirjan V, Shiri M, Heravi MM, Hosseinnejad T, Shintre SA, Koorbanally NA. Res. Chem. Intermed. 2017; 43: 2119
    • 13f Shiri M, Farajpour B, Bozorgpour-Savadjani Z, Shintre SA, Koorbanally NA, Kruger HG, Notash B. Tetrahedron 2015; 71: 5531
    • 13g Shiri M, Mirpour-Marzoni SZ, Bozorgpour-Savadjani Z, Soleymanifard B, Kruger HG. Monatsh. Chem. 2014; 145: 1947
    • 13h Shiri M, Bozorgpour-Savadjani Z. J. Iran. Chem. Soc. 2015; 12: 389
    • 13i Soleymanifard B, Heravi MM, Shiri M, Zolfigol MA, Rafiee M, Kruger HG, Naicker T, Rasekhmanesh F. Tetrahedron Lett. 2012; 53: 3546
    • 14a Hamama WS, Ibrahim ME, Gooda AA, Zoorob HH. RSC Adv. 2018; 8: 8484
    • 14b Abdel-Wahab BF, Khidre RE, Farahat AA, Sayed El-Ahl AA. ARKIVOC 2012; 211
    • 14c Abdel-Wahab BF, Khidre RE. J. Chem. 2013; 851297
  • 15 CCDC 1996227 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 16a Santhi J, Baire B. Chem. Asian J. 2019; 14: 3161
    • 16b Kang Y, Cho YJ, Ko K, Jang H. Catal. Sci. Technol. 2015; 5: 3931
    • 16c Lopes EF, Dalberto BT, Perin G, Alves D, Barcellos T, Lenardao EJ. Chem. Eur. J. 2017; 23: 13760
  • 17 Meth-Cohn O, Narine B, Tarnowski BA. J. Chem. Soc., Perkin Trans. 1 1981; 1520
  • 18 Chandra A, Singh B, Upadhyay S, Singh RM. Tetrahedron 2008; 64: 11680