Synthesis 2020; 52(21): 3231-3242
DOI: 10.1055/s-0040-1707133
special topic
© Georg Thieme Verlag Stuttgart · New York

Amide Synthesis by Transamidation of Primary Carboxamides

Maria Kolympadi Marković
a  University of Rijeka, Department of Physics, Radmile Matejčić 2, 51000 Rijeka, Croatia
,
Dean Marković
b  University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, 51000 Rijeka, Croatia
,
c  Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) UMR CNRS 7378 - Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex, France   Email: sylvain.laclef@u-picardie.fr
› Author Affiliations
D.M. would like to thank the Croatian Science Foundation (Hrvatska Zaklada za Znanost) for funding through project IP-2019-04-8846. Furthermore, financial support was provided by the University of Rijeka­ (research grant UNIRI-prirod-18-102). M.K.M. is grateful to the Croatian Science Foundation for funding her postdoctoral position through the project IP-2016-06-3568.
Further Information

Publication History

Received: 16 April 2020

Accepted: 06 May 2020

Publication Date:
04 June 2020 (online)


Published as part of the Special Topic Recent Advances in Amide Bond Formation

Abstract

The amide functionality is one of the most important and widely used groups in nature and in medicinal and industrial chemistry. Because of its importance and as the actual synthetic methods suffer from major drawbacks, such as the use of a stoichiometric amount of an activating agent, epimerization and low atom economy, the development of new and efficient amide bond forming reactions is needed. A number of greener and more effective strategies have been studied and developed. The transamidation of primary amides is particularly attractive in terms of atom economy and as ammonia is the single byproduct. This review summarizes the advancements in metal-catalyzed and organocatalyzed transamidation methods. Lewis and Brønsted acid transamidation catalysts are reviewed as a separate group. The activation of primary amides by promoter, as well as catalyst- and promoter-free protocols, are also described. The proposed mechanisms and key intermediates of the depicted transamidation reactions are shown.

1 Introduction

2 Metal-Catalyzed Transamidations

3 Organocatalyzed Transamidations

4 Lewis and Brønsted Acid Catalysis

5 Promoted Transamidation of Primary Amides

6 Catalyst- and Promoter-Free Protocols

7 Conclusion

 
  • References

    • 1a Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 1b Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
  • 2 Greenberg A, Breneman CM, Liebman JF. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. Wiley-Interscience; New York: 2000
    • 3a Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
    • 3b Bode JW. Curr. Opin. Drug Discovery Dev. 2006; 9: 765
    • 3c Cupido T, Tulla-Puche J, Spengler J, Albericio F. Curr. Opin. Drug Discovery Dev. 2007; 10: 768
  • 4 Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
  • 5 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL, Lindermann RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
    • 6a Pattabiraman VR, Bode JW. Nature 2011; 480: 471
    • 6b Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 6c Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 7453
    • 6d de Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029
    • 6e Zambron BK, Dubbaka SR, Markovic D, Moreno-Clavijo E, Vogel P. Org. Lett. 2013; 15: 2550
    • 6f Gunanathan C, Ben-David Y, Milstein D. Science 2007; 317: 790
  • 7 Acosta-Guzman P, Mateus-Gomez A, Gamba-Sanchez D. Molecules 2018; 23: 2382
  • 8 The Chemistry of Amides. Zabicky J. John Wiley & Sons Ltd; London: 1970: 23
    • 9a Hall HK. Jr, El-Shekeil A. Chem. Rev. 1983; 83: 549
    • 9b Yamada S. Rev. Heteroat. Chem. 1999; 19: 203
    • 9c Szostak M, Aubé J. Chem. Rev. 2013; 113: 5701
    • 10a Liu C, Szostak M. Chem. Eur. J. 2017; 23: 7157
    • 10b Meng G, Shi S, Lalancette R, Szostak R, Szostak M. J. Am. Chem. Soc. 2018; 140: 727
    • 10c Kovacs E, Rozsa B, Csomos A, Csizmadia IG, Mucsi Z. Molecules 2018; 23: 2859
    • 11a Hutchby M, Houlden CE, Haddow MF, Tyler SN. G, Lloyd-Jones GC, Booker-Milburn KI. Angew. Chem. Int. Ed. 2012; 51: 548
    • 11b Liu C, Shi S, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2018; 20: 7771
    • 11c Li G, Szostak M. Chem. Rec. 2019; 19: 1
    • 12a Meng G, Szostak M. Org. Lett. 2015; 17: 4364
    • 12b Li X, Zou G. J. Organomet. Chem. 2015; 794: 136
    • 12c Meng G, Szostak M. Org. Biomol. Chem. 2016; 14: 5690
    • 12d Shi S, Szostak M. Chem. Eur. J. 2016; 22: 10420
    • 12e Simmons BJ, Weires NA, Dander JE, Garg NK. ACS Catal. 2016; 6: 3176
    • 12f Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
    • 13a Shi S, Szostak M. Chem. Commun. 2017; 53: 10584
    • 13b Meng G, Lei P, Szostak M. Org. Lett. 2017; 19: 2158
    • 13c Zhou T, Li G, Nolan S, Szostak M. Org. Lett. 2019; 21: 3304
    • 14a Liu Y, Shi S, Achtenhagen M, Liu R, Szostak M. Org. Lett. 2017; 19: 1614
    • 14b Liu Y, Achtenhagen M, Liu R, Szostak M. Org. Biomol. Chem. 2018; 16: 1322
    • 14c Li G, Szostak M. Nat. Commun. 2018; 9: 4165
  • 15 Rahman MM, Li G, Szostak M. J. Org. Chem. 2019; 84: 12091
    • 16a Zaragoza-Dorwald F, von Kiedrowski G. Synthesis 1988; 917
    • 16b Smith ME, Adkins H. J. Am. Chem. Soc. 1938; 60: 657
    • 17a Maffioli SI, Marzorati E, Marazzi A. Org. Lett. 2005; 7: 5237
    • 17b Midya GC, Kapat A, Maiti S, Dash J. J. Org. Chem. 2015; 80: 4148
    • 17c Sharley DD. S, Williams JM. J. Tetrahedron Lett. 2017; 58: 4090
    • 18a Yamaguchi K, Kobayashi H, Oishi T, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 544
    • 18b Yamaguchi K, Kobayashi H, Wang Y, Oishi T, Ogasawara Y, Mizuno N. Catal. Sci. Technol. 2013; 3: 318
    • 18c Tomoya K, Asuka N, Hiroshi N. J. Am. Chem. Soc. 2019; 141: 825
    • 19a Ali MA, Punniyamurthy T. Adv. Synth. Catal. 2010; 352: 288
    • 19b Gowda RR, Chakraborty D. Eur. J. Org. Chem. 2011; 2226
    • 19c Crochet P, Cadierno V. Chem. Commun. 2015; 51: 2495
    • 20a Khalafi-Nezhad A, Mokhtari B, Soltani Rad MN. Tetrahedron Lett. 2003; 44: 7325
    • 20b Jaita S, Phakhodee W, Chairungsi N, Pattarawarapan M. Tetrahedron Lett. 2018; 59: 3571
  • 21 Veitch GE, Bridgwood KL, Ley SV. Org. Lett. 2008; 10: 3623
    • 22a Schnyder A, Beller M, Mehltretter G, Nsenda T, Studer M, Indolese AF. J. Org. Chem. 2001; 66: 4311
    • 22b Takacs E, Varga C, Skoda-Foldes R, Kollar L. Tetrahedron Lett. 2007; 48: 2453
    • 22c Nielsen DU, Taaning RH, Lindhardt AT, Gogsig TM, Skrydstrup T. Org. Lett. 2011; 13: 4454
    • 22d Mane RS, Bhanage BM. RSC Adv. 2015; 5: 76122
    • 23a Hoerter JM, Otte KM, Gellman SH, Cui Q, Stahl SS. J. Am. Chem. Soc. 2008; 130: 647
    • 23b Hoerter JM, Otte KM, Gellman SH, Stahl SS. J. Am. Chem. Soc. 2006; 128: 5177
  • 24 Eldred SE, Stone DA, Gellman SH, Stahl SS. J. Am. Chem. Soc. 2003; 125: 3422
  • 25 Zhang M, Imm S, Bähn S, Neumann H, Beller M. Angew. Chem. Int. Ed. 2012; 51: 3905
  • 26 Atkinson BN, Chhatwal AR, Lomax HL, Walton JW, Williams JM. J. Chem. Commun. 2012; 48: 11626
  • 27 Singh DP, Allam BK, Singh KN, Singh VP. RSC Adv. 2014; 4: 1155
  • 28 Nirmala M, Prakash G, Viswanathamurthi P, Malecki JG. J. Mol. Catal. A: Chem. 2015; 403: 15
  • 29 Tamura M, Tonomura T, Shimizu K.-I, Satsuma A. Green Chem. 2012; 14: 717
  • 30 Chevella D, Mameda N, Peraka S, Kodumuri S, Banothu R, Nama N. Catal. Commun. 2016; 81: 29
  • 31 Nammalwar B, Mudala NP, Watts FM, Bunce RA. Tetrahedron 2015; 71: 9101
  • 32 Pathare SP, Jain AK. H, Akamanchi KG. RSC Adv. 2013; 3: 7697
  • 33 Chaudhari PS, Salim SD, Sawant RV, Akamanchi KG. Green Chem. 2010; 12: 1707
  • 34 Wagh GD, Pathare SP, Akamanchi KG. ChemistrySelect 2018; 3: 7049
  • 35 Ghosh SC, Li CC, Zeng HC, Ngiam JS. Y, Seayad AM, Chen A. Adv. Synth. Catal. 2014; 356: 475
  • 36 Ali MA, Siddiki SM. A. H, Kon K, Shimizu K. Tetrahedron Lett. 2014; 55: 1316
  • 37 Becerra-Figueroa L, Ojeda-Porras A, Gamba-Sanchez D. J. Org. Chem. 2014; 79: 4544
  • 38 Arefi M, Heydari A. RSC Adv. 2016; 6: 24684
  • 39 Miraki MK, Arefi M, Yazdani E, Abbasi S, Karimi M, Azizi K, Heydari A. ChemistrySelect 2016; 1: 6328
  • 40 Allen CL, Atkinson BN, Williams JM. J. Angew. Chem. Int. Ed. 2012; 51: 1383
  • 41 Rao SN, Mohan DC, Adimurthy S. Org. Lett. 2013; 15: 1496
  • 42 Rao SN, Mohan DC, Adimurthy S. Green Chem. 2014; 16: 4122
  • 43 Dohi T, Kita Y. Chem. Commun. 2009; 2073
  • 44 Vanjari R, Allam BK, Singh KN. RSC Adv. 2013; 3: 1691
    • 45a Edward JT, Chang HS, Yates K, Stewart R. Can. J. Chem. 1960; 38: 1518
    • 45b O’Connor C. Q. Rev., Chem. Soc. 1970; 24: 553
  • 46 Wu J.-W, Wu Y.-D, Dai J.-J, Xu H.-J. Adv. Synth. Catal. 2014; 356: 2429
  • 47 Nguyen TB, Sorres J, Tran MQ, Ermolenko L, Al-Mourabit A. Org. Lett. 2012; 14: 3202
  • 48 Marcelli T. Angew. Chem. Int. Ed. 2010; 49: 6840
  • 49 Bon E, Bigg DC. H, Bertrand G. J. Org. Chem. 1994; 59: 4035
  • 50 Yu S, Song KH, Lee S. Asian J. Org. Chem. 2019; 8: 1613
  • 51 Shi M, Cui S.-C. Synth. Commun. 2005; 35: 2847
  • 52 Corma A, García H, Leyva A. Chem. Commun. 2003; 2806
  • 53 Dineen TA, Zajac MA, Myers AG. J. Am. Chem. Soc. 2006; 128: 16406
  • 54 Guo W, Huang J, Wu H, Liu T, Luo Z, Jian J, Zeng Z. Org. Chem. Front. 2018; 5: 2950
  • 55 Vanjari R, Allam BK, Singh KN. Tetrahedron Lett. 2013; 54: 2553
  • 56 Lebleu T, Kotsuki H, Maddaluno J, Legros J. Tetrahedron Lett. 2014; 55: 362
  • 57 Yin J, Zhang J, Cai C, Deng G.-J, Gong H. Org. Lett. 2019; 21: 387
  • 58 Bensalah FO, Bil A, Wittine K, Bellahouel S, Lesur D, Markovic D, Laclef S. Org. Biomol. Chem. 2019; 17: 9425