Synlett 2020; 31(14): 1343-1348
DOI: 10.1055/s-0040-1707145
synpacts
© Georg Thieme Verlag Stuttgart · New York

Force-Induced Cycloaddition of Aziridine: Can We Force a New Route?

Sangmin Jung
,
Seo Yeon Kim
,
Hyo Jae Yoon
This work was supported by the National Research Foundation of Korea (NRF-2019R1A6A1A11044070; NRF-2019R1A2C2011003).
Further Information

Publication History

Received: 11 May 2020

Accepted after revision: 15 May 2020

Publication Date:
18 June 2020 (online)


Abstract

Cycloaddition reactions of aziridines with dipolarophiles under traditional thermal or photochemical conditions entail destructive routes to form reactive intermediates such as an azomethine ylide. This article highlights a recent study that demonstrates a cycloaddition reaction of aziridine induced by mechanical force. Experimental results suggest that the force-induced cycloaddition of aziridine with dimethyl acetylenedicarboxylate as a dipolarophile does not seem to involve an ylide, with implications for a possible new reaction route.

1 Rivalry between Aziridine and Epoxide

2 Mechanochemically Responsive Polymers

3 Aziridine Mechanophore

4 Concluding Remarks and Outlook

 
  • References

  • 1 Houk KN, Rondan NG, Santiago C, Gallo CJ, Gandour RW, Griffin GW. J. Am. Chem. Soc. 1980; 102: 1504
  • 2 Nielsen IM. B. J. Phys. Chem. A 1998; 102: 3193
  • 3 Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
  • 4 Kang S, Moon HK, Yoon HJ. Macromolecules 2018; 51: 4068
  • 5 Stankovic S, D’hooghe M, Catak S, Eum H, Waroquier M, Van Speybroeck V, De Kimpe N, Ha HJ. Chem. Soc. Rev. 2012; 41: 643
  • 6 Yoon HJ, Kim YW, Lee BK, Lee WK, Kim Y, Ha HJ. Chem. Commun. 2007; 79
  • 7 Lee WK, Ha HJ. Aldrichimica Acta 2003; 36: 57
  • 8 Kim Y, Ha HJ, Han KS, Ko SW, Yun HS, Yoon HJ, Kim MS, Lee WK. Tetrahedron Lett. 2005; 46: 4407
  • 9 Talo A, Passiniemi P, Forsen O, Ylasaari S. Synth. Met. 1997; 85: 1333
  • 10 Clark LJ, Cosman MA. Int. J. Adhes. Adhes. 2003; 23: 343
  • 11 Dang ZM, Yu YF, Xu HP, Bai J. Compos. Sci. Technol. 2008; 68: 171
  • 12 Brewis DM, Comyn J, Shalash RJ. A, Tegg JL. Polymer 1980; 21: 357
  • 13 Kovrov A, Helgesen M, Boeffel C, Kropke S, Sondergaard RR. Sol. Energy Mater. Sol. Cells 2020; 204
  • 14 Yang XT, Guo YQ, Luo X, Zheng N, Ma TB, Tan JJ, Li CM, Zhang QY, Gu JW. Compos. Sci. Technol. 2018; 164: 59
  • 15 Deacy AC, Kilpatrick AF. R, Regoutz A, Williams CK. Nat. Chem. 2020; 12: 372
  • 16 Jung S, Kang S, Kuwabara J, Yoon HJ. Polym. Chem. 2019; 10: 4506
  • 17 Jang HJ, Lee JT, Yoon HJ. Polym. Chem. 2015; 6: 3387
  • 18 Moon HK, Kang S, Yoon HJ. Polym. Chem. 2017; 8: 2287
  • 19 Koby RF, Hanusa TP, Schley ND. J. Am. Chem. Soc. 2018; 140: 15934
  • 20 Kubota K, Pang YD, Miura A, Ito H. Science 2019; 366: 1500
  • 21 Kabb CP, O’Bryan CS, Morley CD, Angelini TE, Sumerlin BS. Chem. Sci. 2019; 10: 7702
  • 22 Huang WM, Wu X, Gao X, Yu YF, Lei H, Zhu ZS, Shi Y, Chen YL, Qin M, Wang W, Cao Y. Nat. Chem. 2019; 11: 310
  • 23 Wang JP, Kouznetsova TB, Niu ZB, Rheingold AL, Craig SL. J. Org. Chem. 2015; 80: 11895
  • 24 Ramirez AL. B, Kean ZS, Orlicki JA, Champhekar M, Elsakr SM, Krause WE, Craig SL. Nat. Chem. 2013; 5: 757
  • 25 Yang JH, Horst M, Romaniuk JA. H, Jin ZX, Cegelski L, Xia Y. J. Am. Chem. Soc. 2019; 141: 6479
  • 26 Piermattei A, Karthikeyan S, Sijbesma RP. Nat. Chem. 2009; 1: 133
  • 27 Akbulatov S, Tian Y, Huang Z, Kucharski TJ, Yang QZ, Boulatov R. Science 2017; 357: 299
  • 28 Chen ZX, Mercer JA. M, Zhu XL, Romaniuk JA. H, Pfattner R, Cegelski L, Martinez TJ, Burns NZ, Xia Y. Science 2017; 357: 475
  • 29 Barbee MH, Wang JP, Kouznetsova T, Lu ML, Craig SL. Macromolecules 2019; 52: 6234
  • 30 Klukovich HM, Kean ZS, Ramirez AL. B, Lenhardt JM, Lin JX, Hu XQ, Craig SL. J. Am. Chem. Soc. 2012; 134: 9577
  • 31 Jung SM, Yoon HJ. Angew. Chem. Int. Ed. 2020; 59: 4883
  • 32 Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
  • 33 Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
  • 34 Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
  • 35 Dauban P, Malik G. Angew. Chem. Int. Ed. 2009; 48: 9026
  • 36 Lu PF. Tetrahedron 2010; 66: 2549
  • 37 Shipman M. Synlett 2006; 3205
  • 38 Huisgen R, Scheer W, Huber H. J. Am. Chem. Soc. 1967; 89: 1753
  • 39 Gomes PJ. S, Nunes CM, Pais AA. C. C, Melo TM. V. D. P. E, Arnaut LG. Tetrahedron Lett. 2006; 47: 5475
  • 40 Cardoso AL, Melo TM. V. D. P. E. Eur. J. Org. Chem. 2012; 6479
  • 41 Beyer MK. J. Chem. Phys. 2000; 112: 7307
  • 42 Stevenson R, De Bo G. J. Am. Chem. Soc. 2017; 139: 16768
  • 43 Karman M, Verde-Sesto E, Weder C. ACS Macro Lett. 2018; 7: 1028
  • 44 Berkowski KL, Potisek SL, Hickenboth CR, Moore JS. Macromolecules 2005; 38: 8975
  • 45 Di Giannantonio M, Ayer MA, Verde-Sesto E, Lattuada M, Weder C, Fromm KM. Angew. Chem. Int. Ed. 2018; 57: 11445
  • 46 Lin YJ, Kouznetsova TB, Craig SL. J. Am. Chem. Soc. 2020; 142: 99
  • 47 Hsu TG, Zhou JF, Su HW, Schrage BR, Ziegler CJ, Wang JP. J. Am. Chem. Soc. 2020; 142: 2100
  • 48 Su JK, Feist JD, Yang JH, Mercer JA. M, Romaniuk JA. H, Chen ZX, Cegelski L, Burns NZ, Xia Y. J. Am. Chem. Soc. 2018; 140: 12388
  • 49 Wei K, Gao ZC, Liu HR, Wu XJ, Wang F, Xu HX. ACS Macro Lett. 2017; 6: 1146
  • 50 Hu XR, McFadden ME, Barber RW, Robb MJ. J. Am. Chem. Soc. 2018; 140: 14073