Synthesis 2020; 52(21): 3277-3285
DOI: 10.1055/s-0040-1707146
special topic
© Georg Thieme Verlag Stuttgart · New York

Syntheses of Enantiopure 1,2-Ethylenediamines with Tethered Secondary Amines of the Formula H2NCH2CH[(CH2) n NHMe]NH2 (n = 1–4) from α-Amino Acids: New Agents for Asymmetric Catalysis

,
Jack H. Gunn
,
Maximilian A. Selbst
,
Reagan F. Lucas
,
Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA   Email: gladysz@mail.chem.tamu.edu
› Author Affiliations
The authors thank the Welch Foundation (Grant A-1656) for support.
Further Information

Publication History

Received: 04 May 2020

Accepted after revision: 18 May 2020

Publication Date:
16 June 2020 (online)


Published as part of the Special Topic Recent Advances in Amide Bond Formation

Abstract

Tris(hydrochloride) adducts of the title compounds­ are prepared from the inexpensive α-amino acids H2N(C=O)CH2CH(NH2)CO2H, HO(C=O)(CH2) nCH(NH2)CO2H (n′ = 1, 2), and H2N(CH2)4CH(NH2)CO2H, respectively (steps/overall yield = 5/32%, 7/30%, 7/33%, 5/38%). The NH2 group that is remote from the secondary amine is installed via BH3 reduction of an amide [–(C=O)NR2] derived­ from an α-amino carboxylic acid. The MeNHCH2 units are introduced by BH3 reductions of alkyl carbamate [RO(C=O)NHCH2–; R = Et, t-Bu] or amide [MeHN(C=O)–] moieties.

Supporting Information

 
  • References

  • 1 Noyori R, Kitamura M. Enantioselective Catalysis with Metal Complexes. An Overview. In Modern Synthetic Methods, Vol. 5. Springer; Berlin: 1989: 115-198
    • 2a Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560 ; Angew. Chem. 2008, 120, 1584
    • 2b Fu GC. Acc. Chem. Res. 2000; 33: 412
    • 2c Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
  • 3 Kizirian J.-C. Chem. Rev. 2008; 108: 140
    • 4a Ganzmann C, Gladysz JA. Chem. Eur. J. 2008; 14: 5397
    • 4b Maximuck WJ, Ganzmann C, Alvi S, Hooda KR, Gladysz JA. Dalton Trans. 2020; 49: 3680
    • 5a Lewis KG, Ghosh SK, Bhuvanesh N, Gladysz JA. ACS Cent. Sci. 2015; 1: 50
    • 5b Kumar A, Ghosh SK, Gladysz JA. Org. Lett. 2016; 18: 760
    • 5c Joshi H, Ghosh SK, Gladysz JA. Synthesis 2017; 49: 3905
    • 5d Maximuck WJ, Gladysz JA. Mol. Catal. 2019; 473: 110360
    • 5e Kabes CQ, Maximuck WJ, Ghosh SK, Kumar A, Bhuvanesh N, Gladysz JA. ACS Catal. 2020; 10: 3249
    • 5f Luu QH, Gladysz JA. Chem. Eur. J. 2020; 26 DOI: in press; 10.1002/chem.202001639.
  • 6 Ghosh SK, Ganzmann C, Bhuvanesh N, Gladysz JA. Angew. Chem. Int. Ed. 2016; 55: 4356 ; Angew. Chem. 2016, 128, 4429
    • 7a Belokon YN, Maleev VI, North M, Larionov VA, Savel’yeva TF, Nijland A, Nelyubina YV. ACS Catal. 2013; 3: 1951
    • 7b Maleev VI, North M, Larionov VA, Fedyanin IV, Savel’yeva TF, Moscalenko MA, Smolyakov AF, Belokon YN. Adv. Synth. Catal. 2014; 356: 1803
    • 7c Larionov VA, Markelova EP, Smol’yakov AF, Savel’yeva TF, Maleev VI, Belokon YN. RSC Adv. 2015; 5: 72764
    • 7d Rulev YA, Larionov VA, Lokutova AV, Moskalenko MA, Lependina OL, Maleev VI, North M, Belokon YN. ChemSusChem 2016; 9: 216
  • 8 Werner A. V. Ber. Dtsch. Chem. Ges. 1912; 45: 121
  • 9 Ghosh SK, Ganzmann C, Gladysz JA. Tetrahedron: Asymmetry 2015; 26: 1273
    • 10a Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 10b Brazier JB, Tomkinson NC. O. Secondary and Primary Amine Catalysts for Iminium Catalysis. In Asymmetric Organocatalysis. Topics in Current Chemistry, Vol. 291. List B. Springer; Berlin: 2010: 281-347
    • 10c Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138 ; Angew. Chem. 2008, 120, 6232
  • 11 The configurations of the products derived from the l-amino acid starting materials in Schemes 2–4 are not specified in their numerical abbreviations in the main text but can be inferred from the Schemes and are provided in the bold headers in the experimental section. All reactions occur with retention of relative configuration.
  • 12 Mittapalli GK, Reddy KR, Xiong H, Munoz O, Han B, De Riccardis F, Krishnamurthy R, Eschenmoser A. Angew. Chem. Int. Ed. 2007; 46: 2470 ; Angew. Chem. 2007, 119, 2522
  • 13 Stojković MR, Piotrowski P, Schmuck C, Piantandia I. Org. Biomol. Chem. 2015; 13: 1629
  • 14 Patel BA, Abel B, Barbuti AM, Velagapudi UK, Chen Z, Ambudkar SV, Talele TT. J. Med. Chem. 2018; 61: 834
  • 15 Bonnat M, Heercouet A, Le Corre M. Synth. Commun. 1991; 21: 1579
  • 16 Wojciechowski F, Suchy M, Li AX, Azab HA, Bartha R, Hudson RH. E. Bioconjugate Chem. 2007; 18: 1625
    • 17a Wang S, Zhang Y, Li Q, Sun R, Ma L, Li L. Aust. J. Chem. 2017; 70: 52
    • 17b More SS, Vince R. J. Med. Chem. 2009; 52: 4650
    • 17c Lammnes TM, Le Nôtre J, Franssen MC. R, Scott EL, Sanders JP. M. ChemSusChem 2011; 4: 785
  • 18 Li Y, Manickam G, Ghoshal A, Subramaniam P. Synth. Commun. 2006; 36: 925
  • 19 Bindman NA, Bobeica SC, Liu WR, van der Donk WA. J. Am. Chem. Soc. 2015; 137: 6975
  • 20 Zheng G. (Stealth BioTherapeutics Corp., Monaco) WO2019/099481, Chem. Abstr. 2019, 171, 26404
  • 21 The prices quoted for the amino acids are derived from one kg quantities available from the supplier VWR Life Science at us.vwr.com/store (accessed April 27, 2020).
    • 22a Comba P, Maeder M, Zipper L. Helv. Chim. Acta 1989; 72: 1029
    • 22b Cox JP. L, Craig AS, Helps IM, Jankowski KJ, Parker D, Eaton MA. W, Millican AT, Millar K, Beeley NR. A, Boyce BA. J. Chem. Soc., Perkin. Trans. 1 1990; 2567
    • 22c Treder AP, Andruszkiewicz R, Zgoda W, Ford C, Hudson A. Bioorg. Med. Chem. Lett. 2009; 19: 1009
  • 23 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512
  • 24 Vizcaino ML, Engel P, Trautman E, Crawford JM. J. Am. Chem. Soc. 2014; 136: 9244
  • 25 This melting point is somewhat lower than those reported in the literature, see ref 26.
    • 26a Azuse I, Tamura M, Kinomura K, Okai H, Kouge K, Hamatsu F, Koizumi T. Bull. Chem. Soc. Jpn. 1989; 62: 3103
    • 26b Pícha J, Buděšínský M, Macháčková K, Collinsová M, Jiráček J. J. Peptide Sci. 2017; 23: 202
  • 27 For purifications involving column chromatography, ca. 20 grams of silica gel (Silicycle 230–400 mesh) were used for each gram of sample. Any attendant Rf values were obtained on Merck 60 silica gel TLC plates (F254).
  • 28 In a separate experiment, compound 5 was further purified via silica gel column chromatography (15:82:3 v/v/v MeOH/EtOAc/NH4OH). 1H NMR (500 MHz, DMSO-d6): δ = 7.55 (s, 1 H), 7.27 (s, 1 H), 7.09 (s, 1 H), 3.98 (q, 3JH–H = 7.1 Hz, 2 H), 3.17–3.07 (m, 1 H), 1.16 (t, 3JH–H = 7.1 Hz, 3 H). 13C{1H} (125 MHz, DMSO-d6): δ = 173.1, 156.5, 59.9, 54.1, 43.7, 14.7 (6 × s).
  • 29 Appropriate microanalyses could not be obtained for the tris(hydrochloride) salts of the title compounds, presumably due to their hygroscopic nature, as detailed in the text. The data were always a better but still imperfect fit to mono- or dihydrates (low C, low N).
  • 30 Caution! Septa appeared to degrade and contaminate the sample, and were therefore avoided.
    • 31a This sample cannot be represented as analytically pure, but the microanalytical data are nonetheless presented to illustrate the best results obtained to date.
    • 31b Gabbaï FP, Chirik PJ, Fogg DE, Meyer K, Mindiola DJ, Schafer LL, You S.-L. Organometallics 2016; 35: 3255