Subscribe to RSS
DOI: 10.1055/s-0040-1707185
Catch It If You Can: Copper-Catalyzed (Transfer) Hydrogenation Reactions and Coupling Reactions by Intercepting Reactive Intermediates Thereof
Authors
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (German Research Council) (Emmy Noether Fellowship for J.F.T., TE1101/2-1) and by the Fonds der Chemischen Industrie (Liebig-Stipendium for J.F.T.).
Publication History
Received: 21 May 2020
Accepted after revision: 18 June 2020
Publication Date:
13 July 2020 (online)

Abstract
The key reactive intermediate of copper(I)-catalyzed alkyne semihydrogenations is a vinylcopper(I) complex. This intermediate can be exploited as a starting point for a variety of trapping reactions. In this manner, an alkyne semihydrogenation can be turned into a dihydrogen-mediated coupling reaction. Therefore, the development of copper-catalyzed (transfer) hydrogenation reactions is closely intertwined with the corresponding reductive trapping reactions. This short review highlights and conceptualizes the results in this area so far, with H2-mediated carbon–carbon and carbon–heteroatom bond-forming reactions emerging under both a transfer hydrogenation setting as well as with the direct use of H2. In all cases, highly selective catalysts are required that give rise to atom-economic multicomponent coupling reactions with rapidly rising molecular complexity. The coupling reactions are put into perspective by presenting the corresponding (transfer) hydrogenation processes first.
1 Introduction: H2-Mediated C–C Bond-Forming Reactions
2 Accessing Copper(I) Hydride Complexes as Key Reagents for Coupling Reactions; Requirements for Successful Trapping Reactions
3 Homogeneous Copper-Catalyzed Transfer Hydrogenations
4 Trapping of Reactive Intermediates of Alkyne Transfer Semihydrogenation Reactions: First Steps Towards Hydrogenative Alkyne Functionalizations
5 Copper(I)-Catalyzed Alkyne Semihydrogenations
6 Copper(I)-Catalyzed H2-Mediated Alkyne Functionalizations; Trapping of Reactive Intermediates from Catalytic Hydrogenations
6.1 A Detour: Copper(I)-Catalyzed Allylic Reductions, Catalytic Generation of Hydride Nucleophiles from H2
6.2 Trapping with Allylic Electrophiles: A Copper(I)-Catalyzed Hydroallylation Reaction of Alkynes
6.3 Trapping with Aryl Iodides
7 Conclusion
-
References
- 1 Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014
- 2 Organometallics in Synthesis, Third Manual . Schlosser M. John Wiley & Sins; Hoboken: 2013
- 3 Anastas PT, Warner JC. Green Chemistry. Theory and Practice . Oxford University Press; Oxford: 2000
- 4a Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
- 4b Sheldon RA. Chem. Commun. 2008; 3352
- 4c Trost BM. Angew. Chem. Int. Ed. 1995; 34: 259
- 5 Homogeneous Hydrogenation with Non-Precious Catalysts . Teichert JF. Wiley-VCH; Weinheim: 2020
- 6 The Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2006
- 7a Knowles WS. Angew. Chem. Int. Ed. 2002; 41: 1998
- 7b Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
- 8 Fischer F, Tropsch H. Ber. Dtsch. Chem. Ges. B 1923; 56B: 2428
- 10 Roelen O. DE849548C, 1938
- 12a Applied Homogeneous Catalysis with Organometallic Compounds . Cornils B, Herrmann WA, Beller M, Paciello R. Wiley-VCH; Weinheim: 2018
- 12b Behr A, Neubert P. Applied Homogeneous Catalysis . Wiley-VCH; Weinheim: 2012
- 12c Industrial Organic Chemistry . Arpe H.-J. Wiley-VCH; Weinheim: 2010
- 13a Schwartz LA, Krische MJ. Isr. J. Chem. 2018; 58: 45
- 13b Hassan A, Krische MJ. Org. Process Res. Dev. 2011; 15: 1236
- 13c Ngai M.-Y, Kong J.-R, Krische MJ. J. Org. Chem. 2007; 72: 1063
- 13d Iida H, Krische MJ. Metal-Catalyzed Reductive C–C Bond Formation . In Topics in Current Chemistry, Vol. 279. Krische MJ. Springer-Verlag; Berlin: 2007: 77-104
- 13e Jang H.-Y, Krische MJ. Acc. Chem. Res. 2004; 37: 653
- 14 Kong J.-R, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2006; 128: 718
- 15a Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJ. L, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang T. Green Chem. 2007; 9: 411
- 15b Noyori R. Chem. Commun. 2005; 1807
- 16a Non-Noble Metal Catalysis: Molecular Approaches and Reactions . Moret M.-E, Gebbink RJ. M. Wiley-VCH; Weinheim: 2019
- 16b Alig L, Fritz M, Schneider S. Chem. Rev. 2019; 119: 2681
- 16c Liu W, Sahoo B, Junge K, Beller M. Acc. Chem. Res. 2018; 51: 1858
- 16d Filonenko GA, van Putten R, Hensen EJ. M, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
- 16e Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
- 16f Li Y.-Y, Yu S.-L, Shen W.-Y, Gao J.-X. Acc. Chem. Res. 2015; 48: 2587
- 16g Zell T, Milstein D. Acc. Chem. Res. 2015; 48: 1979
- 16h Bullock RM. Science 2013; 342: 1054
- 17a Liu RY, Buchwald SL. Acc. Chem. Res. 2020; 53: 1229
- 17b Mohr J, Oestreich M. Angew. Chem. Int. Ed. 2016; 55: 12148
- 17c Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
- 17d Sorádová Z, Šebesta R. ChemCatChem 2016; 8: 2581
- 18a Miki Y, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 10830
- 18b Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
- 18c Miki Y, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 1498
- 18d Yang Y, Perry IB, Lu G, Liu P, Buchwald SL. Science 2016; 353: 144
- 18e Shi S.-L, Wong ZL, Buchwald SL. Nature 2016; 532: 353
- 18f Bandar JS, Ascic E, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 5821
- 19a Suess A, Lalic G. Synlett 2016; 27: 1165
- 19b Fujihara T, Semba K, Terao J, Tsuji Y. Catal. Sci. Technol. 2014; 4: 1699
- 20a Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 20b Yoshida H. ACS Catal. 2016; 6: 1799
- 20c Semba K, Fujihara T, Terao J, Tsuji Y. Tetrahedron 2015; 71: 2183
- 20d Alfaro R, Parra A, Alemán J, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
- 20e Zhang L, Cheng J, Carry B, Hou Z. J. Am. Chem. Soc. 2012; 134: 14314
- 20f Zhou Y, You W, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
- 20g Su W, Gong T.-J, Zhang Q, Zhang Q, Xiao B, Fu Y. ACS Catal. 2016; 6: 6417
- 20h Itoh T, Shimizu Y, Kanai M. J. Am. Chem. Soc. 2016; 138: 7528
- 20i Rivera-Chao E, Fañanás-Mastral M. Angew. Chem. Int. Ed. 2018; 57: 9945
- 20j Rivera-Chao E, Mitxelena M, Varela JA, Fañanás-Mastral M. Angew. Chem. Int. Ed. 2019; 58: 18230
- 21a Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
- 21b Deutsch C, Krause N. Chem. Rev. 2008; 108: 2916
- 21c Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498
- 22 Organosilicon Chemistry. Novel Approaches and Reactions . Hiyama T, Oestreich M. Wiley-VCH; Weinheim: 2019
- 23 For the seminal report on catalytic copper(I) hydride chemistry employing hydrosilanes as reducing agents, see: Brunner H, Miehling W. J. Organomet. Chem. 1984; 275: c17
- 24a Lipshutz B, Ung C, Sengupta S. Synlett 1989; 64
- 24b Lipshutz BH, Papa P. Angew. Chem. Int. Ed. 2002; 41: 4580
- 24c Leung LT, Leung SK, Chiu P. Org. Lett. 2005; 7: 5249
- 25a Oestreich M. Synlett 2007; 1629
- 25b Rendler S, Plefka O, Karatas B, Auer G, Fröhlich R, Mück-Lichtenfeld C, Grimme S, Oestreich M. Chem. Eur. J. 2008; 14: 11512
- 25c Gathy T, Peeters D, Leyssens T. J. Organomet. Chem. 2009; 694: 3943
- 25d Vergote T, Nahra F, Merschaert A, Riant O, Peeters D, Leyssens T. Organometallics 2014; 33: 1953
- 26a Niljianskul N, Zhu S, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 1638
- 26b Gribble MW, Pirnot MT, Bandar JS, Liu RY, Buchwald SL. J. Am. Chem. Soc. 2017; 139: 2192
- 27a Chalk AJ, Halpern J. J. Am. Chem. Soc. 1959; 81: 5852
- 27b Halpern J. J. Phys. Chem. 1959; 63: 398
- 27c Goeden GV, Caulton KG. J. Am. Chem. Soc. 1981; 103: 7354
- 28 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
- 29 Thiel NO, Pape F, Teichert JF. In Homogeneous Hydrogenation with Non-Precious Catalysts . Teichert JF. Wiley-VCH; Weinheim: 2020: 87-109
- 31 Catalytic hydrofunctionalizations of alkenes are also a mainstay of modern copper hydride chemistry, see Refs. 17 and 18. For the sake of close comparison and clarity, we herein focus on alkynes as unsaturated starting materials.
- 32 Mankad NP, Laitar DS, Sadighi JP. Organometallics 2004; 23: 3369
- 33a Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
- 33b Ikariya T, Blacker AJ. Acc. Chem. Res. 2007; 40: 1300
- 33c Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
- 34a Staubitz A, Robertson AP. M, Manners I. Chem. Rev. 2010; 110: 4079
- 34b Hamilton CW, Baker RT, Staubitz A, Manners I. Chem. Soc. Rev. 2009; 38: 279
- 35 Korytiaková E, Thiel NO, Pape F, Teichert JF. Chem. Commun. 2017; 53: 732
- 36 Fortman GC, Slawin AM. Z, Nolan SP. Organometallics 2010; 29: 3966
- 37 For a review on metal hydroxide complexes, see: Nelson DJ, Nolan SP. Coord. Chem. Rev. 2017; 353: 278
- 38 Thiel NO, Teichert JF. Org. Biomol. Chem. 2016; 14: 10660
- 39 Thiel NO, Kemper S, Teichert JF. Tetrahedron 2017; 73: 5023
- 40a Budagumpi S, Keri RS, Achar G, Brinda KN. Adv. Synth. Catal. 2020; 362: 970
- 40b Danopoulos AA, Simler T, Braunstein P. Chem. Rev. 2019; 119: 3730
- 40c Yong X, Thurston R, Ho C.-Y. Synthesis 2019; 51: 2058
- 40d Nahra F, Gómez-Herrera A, Cazin CS. J. Dalton Trans. 2017; 46: 628
- 40e Lazreg F, Nahra F, Cazin CS. J. Coord. Chem. Rev. 2015; 293-294: 48
- 40f Egbert JD, Cazin CS. J, Nolan SP. Catal. Sci. Technol. 2013; 3: 912
- 40g Lin JC. Y, Huang RT. W, Lee CS, Bhattacharyya A, Hwang WS, Lin IJ. B. Chem. Rev. 2009; 109: 3561
- 41 Cao H, Chen T, Zhou Y, Han D, Yin S.-F, Han L.-B. Adv. Synth. Catal. 2014; 356: 765
- 42 Kaicharla T, Zimmermann BM, Oestreich M, Teichert JF. Chem. Commun. 2019; 55: 13410
- 43 For a related but conceptually different approach to copper(I)-catalyzed alkyne semireductions, see: Bao H, Zhou B, Jin H, Liu Y. J. Org. Chem. 2019; 84: 3579
- 44 Das M, Kaicharla T, Teichert JF. Org. Lett. 2018; 20: 4926
- 45 For a good overview on synthetic approaches, see: Olpp T, Brückner R. Synthesis 2004; 2135
- 46 Mailig M, Hazra A, Armstrong MK, Lalic G. J. Am. Chem. Soc. 2017; 139: 6969
- 47a Dang H, Cox N, Lalic G. Angew. Chem. Int. Ed. 2014; 53: 752
- 47b Scharfbier J, Oestreich M. Synlett 2016; 27: 1274
- 47c Scharfbier J, Hazrati H, Irran E, Oestreich M. Org. Lett. 2017; 19: 6562
- 48 Noteworthy is the fact that while NCS and NIS were employed under the optimized conditions for chlorinations and iodinations, respectively, N-bromosuccinimide (NBS) led to unselective reactions in the corresponding hydrobrominations.
- 49 Uehling MR, Rucker RP, Lalic G. J. Am. Chem. Soc. 2014; 136: 8799
- 50 Wang J. Stereoselective Alkene Synthesis . In Topics in Current Chemistry, Vol. 327. Springer-Verlag; Berlin: 2012
- 51 Lindlar H. Helv. Chim. Acta 1952; 35: 446
- 52a Sharma DM, Punji B. Chem. Asian J. 2020; 690
- 52b Oger C, Balas L, Durand T, Galano J.-M. Chem. Rev. 2013; 113: 1313
- 52c Crespo-Quesada M, Cárdenas-Lizana F, Dessimoz A.-L, Kiwi-Minsker L. ACS Catal. 2012; 2: 1773
- 52d Molnár Á, Sárkány A, Varga M. J. Mol. Catal. A. 2001; 173: 185
- 53a Daeuble JF, McGettigan C, Stryker JM. Tetrahedron Lett. 1990; 31: 2397
- 53b Semba K, Fujihara T, Xu T, Terao J, Tsuji Y. Adv. Synth. Catal. 2012; 354: 1542
- 53c Whittaker AM, Lalic G. Org. Lett. 2013; 15: 1112
- 53d Cox N, Dang H, Whittaker AM, Lalic G. Tetrahedron 2014; 70: 4219
- 54 Semba K, Kameyama R, Nakao Y. Synlett 2015; 26: 318
- 55 Pape F, Thiel NO, Teichert JF. Chem. Eur. J. 2015; 21: 15934
- 56 For a review on ‘tethered’ NHC ligands, see: Pape F, Teichert JF. Eur. J. Org. Chem. 2017; 4206
- 57 Wakamatsu T, Nagao K, Ohmiya H, Sawamura M. Organometallics 2016; 35: 1354
- 58 Pape F, Brechmann LT, Teichert JF. Chem. Eur. J. 2019; 25: 985
- 59 Gant TG. J. Med. Chem. 2014; 57: 3595
- 60 Dickschat JS. Eur. J. Org. Chem. 2017; 4872
- 61a Atzrodt J, Derdau V, Fey T, Zimmermann J. Angew. Chem. Int. Ed. 2007; 46: 7744
- 61b Jones WD. Acc. Chem. Res. 2003; 36: 140
- 62a Wuts PG. M, Greene TW. Greene’s Protective Groups in Organic Synthesis . John Wiley & Sons; Hoboken: 2007
- 62b Kocieński PJ. Protecting Groups . Thieme; Stuttgart: 2004
- 63a Harada A, Makida Y, Sato T, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2014; 136: 13932
- 63b Yasuda Y, Ohmiya H, Sawamura M. Angew. Chem. Int. Ed. 2016; 55: 10816
- 64a Nguyen TN. T, Thiel NO, Pape F, Teichert JF. Org. Lett. 2016; 18: 2455
- 64b Nguyen TN. T, Thiel NO, Teichert JF. Chem. Commun. 2017; 53: 11686
- 65a Baslé O, Denicourt-Nowicki A, Crévisy C, Mauduit M. In Copper-Catalyzed Asymmetric Synthesis . Alexakis A, Krause N, Woodward S. Wiley-VCH; Weinheim: 2014: 85-126
- 65b Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem. Rev. 2008; 108: 2824
- 65c Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
- 66 Xu G, Zhao H, Fu B, Cang A, Zhang G, Zhang Q, Xiong T, Zhang Q. Angew. Chem. 2017; 56: 13130
- 67 Brechmann, L. T., Teichert, J. F. unpublished results.
- 68 Enantioselective copper(I)-catalyzed hydrogen-mediated coupling could be achieved employing chiral NHC ligands.
- 69 In all reactions, less than 10% of the semihydrogenation products were detected. In the case of 64c, the amount of semihydrogenation product was 25%.
- 70 Less than 5% of the triene was detected.
- 71 Semba K, Kameyama R, Nakao Y. Chem. Lett. 2018; 47: 213
- 72a Semba K, Ariyama K, Zheng H, Kameyama R, Sakaki S, Nakao Y. Angew. Chem. Int. Ed. 2016; 55: 6275
- 72b Armstrong MK, Goodstein MB, Lalic G. J. Am. Chem. Soc. 2018; 140: 10233
- 73 Reversion of stereoselectivity due to change of IUPAC priority rules.
For reviews, see:
For selected examples, see:
For reductive and borylative alkyne functionalizations, see:
Closely related to the reductive alkyne functionalizations presented here are the corresponding borylative transformations. For reviews, see:
For selected examples, see:
For reviews on copper(I) hydride chemistry, see:
For the rare use of other hydride donors in copper(I) hydride chemistry, see:
As an alternative, copper(I) hydrides can be formed directly from copper(II) acetate and a hydrosilane, without addition of an alkoxide as activator. The mechanistic basis for this process has not been studied. For examples, see:
For reviews on transfer hydrogenation, see:
For reviews on copper(I)/NHC complexes, see:
For reviews on alkyne semihydrogenation, see:
A similar influence of the alkene geometry on the outcome of the catalytic reaction has also been observed in related reactions, see:
For reviews on copper(I)-catalyzed allylic substitutions, see:
For related three-component reactions employing hydrosilanes as the hydride source, see: