Synthesis 2020; 52(23): 3595-3603
DOI: 10.1055/s-0040-1707260
psp

Scale-Up of a Heck Alkenylation Reaction: Application to the Synthesis of an Amino-Modifier Nucleoside ‘Ruth Linker’

Shatrughn Bhilare
a   Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India   Email: ar.kapdi@ictmumbai.edu.in
,
Santosh Kori
a   Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India   Email: ar.kapdi@ictmumbai.edu.in
b   Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, MouzaSamantpuri, Bhubaneswar 751013, Odisha, India
,
Harshita Shet
a   Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India   Email: ar.kapdi@ictmumbai.edu.in
b   Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, MouzaSamantpuri, Bhubaneswar 751013, Odisha, India
,
Gundapally Balaram
c   Sapala Organics Pvt. Ltd., Plots Nos. 1468 & 147, IDA Mallapur, Phase-II, Hyderabad 500076, Telangana, India
,
Koosam Mahendar
c   Sapala Organics Pvt. Ltd., Plots Nos. 1468 & 147, IDA Mallapur, Phase-II, Hyderabad 500076, Telangana, India
,
Yogesh S. Sanghvi
d   Rasayan Inc., 2802, Crystal Ridge Road, Encinitas, CA 92024-6615, USA
,
a   Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India   Email: ar.kapdi@ictmumbai.edu.in
› Author Affiliations


Dedicated to the memory of Jerry Lynn Ruth who first demonstrated the utility of this molecule for DNA labeling

Abstract

Ruth linker is a C5 pyrimidine modified nucleoside analogue widely utilized for the incorporation of a primary amine in a synthetic oligonucleotide. The increasing demand for non-radioactive labeling, detection of biomolecules, and assembly of COVID-19 test kits has triggered a need for scale-up of Ruth linker. Herein, an efficient protocol involving a palladium-catalyzed Heck alkenylation is described. The synthesis has been optimized with a goal of low catalyst concentration, column-free isolation, high product purity, reproducibility, and shorter reaction time. The scalability and utility of the process have been demonstrated successfully on a 100 g scale (starting material). Additionally, for scale-up of the Heck alkenylation protocol, 7-phospha-1,3,5-triaza-adamantanebutane sulfonate (PTABS) as the coordinating caged phosphine ligand was also synthesized on a multigram scale after careful optimization of the conditions.

Supporting Information



Publication History

Received: 06 June 2020

Accepted after revision: 01 August 2020

Article published online:
08 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lehsten DM, Baehr DN, Lobl TJ, Vaino AR. Org. Process Res. Dev. 2002; 6: 819
  • 2 Gait MJ, Komiyama M, Seeman NC, Seitz O, Micklefield J, Liu DR. Org. Biomol. Chem. 2013; 11: 2058
  • 3 Varizhuk AM, Kaluzhny DN, Novikov RA, Chizhov AO, Smirnov IP, Chuvilin AN, Tatarinova ON, Fisunov GY, Pozmogova GE, Florentiev VL. J. Org. Chem. 2013; 78: 5964
  • 4 Jung C, Ellington AD. Acc. Chem. Res. 2014; 47: 1825
  • 5 Gallou F, Seeger-Weibel M, Chassagne P. Org. Process Res. Dev. 2013; 17: 390
  • 6 Eyer L, Nencka R, de Clercq E, Seley-Radtke K, Ruzekk D. Antivir. Chem. Chemother. 2018; 26: 1
  • 7 De Clercq E, Li G. Clin. Microbiol. Rev. 2016; 29: 695
  • 8 Shanmugasundaram M, Senthilvelan A, Kore AS. Curr. Org. Chem. 2019; 23: 1439
  • 9 Gayakhe V, Bhilare S, Yashmeen A, Fairlamb IJ. S, Kapdi AR. Transition-Metal Catalyzed Modification of Nucleosides. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Maiti D, Sanghvi YS. Elsevier; Amsterdam: 2018: 167-195
  • 10 Sugimura H, Endo S, Ishizuka K. Tetrahedron Lett. 2015; 56: 6019
  • 11 Bhilare S, Shet H, Sanghvi SY, Kapdi RA. Molecules 2020; 25: 1645
  • 12 de Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HR. N. Saudi Pharm. J. 2019; 27: 1
  • 13 Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
  • 14 Ruth JL, Bergstrom DE. J. Org. Chem. 1978; 43: 2870
  • 15 Bergstrom DE, Ruth JL. J. Am. Chem. Soc. 1976; 98: 1587
  • 16 Whale RF, Coe PL, Walker RT. Nucleosides Nucleotides 1991; 10: 1615
  • 17 Delbecq F, Len C. Application of Heck Alkenylation Reaction in Modified Nucleoside Synthesis. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Maiti D, Sanghvi YS. Elsevier; Amsterdam: 2018: 147-166
  • 18 Chen S, Zhou J, Cai Y, Zheng X, Xie S, Liao Y, Zhu Y, Qin C, Lai W, Yang C. Sci. Rep. 2017; 7: 43820
  • 19 Ruth J. DNA 1984; 3: 123
  • 20 Ruth J, Morgan C, Pasko A. DNA 1985; 4: 93
  • 21 Jablonski E, Moomaw EW, Tullis RH, Ruth JL. Nucleic Acids Res. 1986; 14: 6115
  • 22 Ruth JL, Jablonski E. Nucleosides Nucleotides 1987; 6: 541
  • 23 Ruth J. Patent US5541313, 1996
    • 24a Kricka L. Nonisotopic Probing, Blotting, and Sequencing. Academic Press; London: 1995
    • 24b Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li V, Chen H, Mubareka S, Gubbay JB, Chan W. ACS Nano 2020; 14: 3822
  • 26 Walton TA, Lyttle MH, Dick DJ, Cook RM. Bioconjug. Chem. 2002; 13: 1155
  • 27 Lyttle MH, Walton TA, Dick DJ, Carter TG, Beckman JH, Cook RM. Bioconjug. Chem. 2002; 13: 1146
  • 28 Lee S, Blaisdell TP, Kasaplar P, Sun X, Tan KL. Curr. Protoc. Nucleic Acid Chem. 2014; 57: 2.17.1
  • 29 Sanghvi Y. Chem. Today 2014; 32: 10
  • 30 Bhilare S, Gayakhe V, Ardhapure AV, Sanghvi YS, Schulzke C, Borozdina Y, Kapdi AR. RSC Adv. 2016; 6: 83820
  • 31 Gayakhe V, Ardhapure A, Kapdi AR, Sanghvi YS, Serrano JL, García L, Pérez J, García J, Sanchez G, Fischer C. J. Org. Chem. 2016; 81: 2713
  • 32 Ardhapure AV, Sanghvi YS, Kapdi AR, García J, Sanchez G, Lozano P, Serrano JL. RSC Adv. 2015; 5: 24558
  • 33 Kapdi A, Gayakhe V, Sanghvi YS, García J, Lozano P, da Silva I, Perez J, Serrano JL. RSC Adv. 2014; 4: 17567
  • 34 Kapdi AR, Bhilare SA, Shah JA. Encyclopedia of Reagents for Organic Synthesis . Wiley; New York: 2020: 1-6
  • 35 Bhilare S, Shah J, Gaikwad V, Gupta G, Sanghvi YS, Bhanage BM, Kapdi AR. Synthesis 2019; 51: 4239
  • 36 Murthy Bandaru SS, Bhilare S, Chrysochos N, Gayakhe V, Trentin I, Schulzke C, Kapdi AR. Org. Lett. 2018; 20: 473
  • 37 Bhilare S, Murthy Bandaru SS, Shah J, Chrysochos N, Schulzke C, Sanghvi YS, Kapdi AR. J. Org. Chem. 2018; 83: 13088
  • 38 Bandaru SS. M, Bhilare S, Cardozo J, Chrysochos N, Schulzke C, Sanghvi YS, Gunturu KC, Kapdi AR. J. Org. Chem. 2019; 84: 8921
  • 39 Saito Y, Hudson RH. E. J. Photochem. Photobiol., C 2018; 36: 48
  • 40 Chen M, Ma Z, Wu X, Mao S, Yang Y, Tan J, Krueger CJ, Chen AK. A. Sci. Rep. 2017; 7: 1550
  • 41 Monroy-Contreras R, Vaca L. J. Nucleic Acids 2011; 741
  • 42 el Kouni MH, Cha S. Anal. Biochem. 1981; 111: 67
  • 43 Takakura Y, Tsunashima M, Suzuki J, Usami S, Kakuta Y, Okino N, Ito M, Yamamoto T. FEBS J. 2009; 276: 1383
  • 44 Ruth JL. Patent US4948882, 1990
  • 45 Yang Q, Babij NR, Good S. Org. Process Res. Dev. 2019; 23: 2608
  • 46 Daigle DJ, Decuir TJ, Robertson JB, Darensbourg DJ. Inorg. Synth. 1998; 32: 40
  • 47 Gonsalvi L, Peruzzini M. Encyclopedia of Reagents for Organic Synthesis . Wiley; New York: 2010: 1–5
  • 48 Bravo J, Bolaño S, Gonsalvi L, Peruzzini M. Coord. Chem. Rev. 2010; 254: 555
  • 49 Daigle D, Pepperman A, Vail S. J. Heterocycl. Chem. 1974; 11: 407