Synthesis
DOI: 10.1055/s-0040-1707272
short review

The Power of Iron Catalysis in Diazo Chemistry

,
,
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2017-04272, the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) (Centre in Green Chemistry and Catalysis) Strategic Cluster FRQNT-2020-RS4-265155-CCVC, and Université Laval.


Abstract

The use of iron catalysis to enable reactions with diazo compounds has emerged as a valuable tool to forge carbon–carbon or carbon–heteroatom bonds. While diazo compounds are often encountered with toxic and expensive metal catalysts, such as Rh, Ru, Pd, Ir, and Cu, a resurgence of Fe catalysis has been observed. This short review will showcase and highlight the recent advances in iron-mediated reactions of diazo compounds.

1 Introduction

2 Insertion Reactions

2.1 Insertion into B–H Bonds

2.2 Insertion into Si–H Bonds

2.3 Insertion into N–H Bonds

2.4 Insertion into S–H bonds

3 Ylide Formation and Subsequent Reactions

3.1 Doyle–Kirmse Rearrangement

3.2 [1,2]-Stevens and Sommelet–Hauser Rearrangements

3.3 Olefination Reactions

3.4 Cycloaddition Reactions

3.5 gem-Difluoroalkenylation

4 Three-Component Reactions

5 Miscellaneous

6 Conclusion



Publication History

Received: 27 June 2020

Accepted after revision: 04 August 2020

Publication Date:
15 September 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Anastas PT, Zimmerman JB. Green Chem. 2019; 21: 6545
  • 2 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaksh A, Zhangf TY. Green Chem. 2007; 9: 411
  • 3 Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
  • 4 Ollevier T. Catal. Sci. Technol. 2016; 6: 41
  • 5 Wenger OS. Chem. Eur. J. 2019; 25: 6043
  • 6 Enthaler S, Junge K, Beller M. Angew. Chem. Int. Ed. 2008; 47: 3317
  • 7 Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
  • 8 Doyle MP, McKervey MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides. Wiley-Interscience; New York: 1998: 652
  • 9 Davies HM. L, Denton JR. Chem. Soc. Rev. 2009; 38: 3061
  • 10 Gillingham D, Fei N. Chem. Soc. Rev. 2013; 42: 4918
  • 11 Damiano C, Sonzini P, Gallo E. Chem. Soc. Rev. 2020; 49: 4867
  • 12 Empel C, Jana S, Koenigs RM. Molecules 2020; 25: 1
  • 13 Allouche EM. D, Charette AB. Synthesis 2019; 51: 3947
  • 14 Cho YH, Kim JH, An H, Ahn KH, Kang EJ. Adv. Synth. Catal. 2020; 362: 2183
  • 15 Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
  • 16 Seitz WJ, Saha AK, Hossain MM. Organometallics 1993; 12: 2604
  • 17 Zhu S.-F, Zhou Q.-L. Nat. Sci. Rev. 2014; 1: 580
  • 18 Li X, Curran DP. J. Am. Chem. Soc. 2013; 135: 12076
  • 19 Cheng QQ, Zhu SF, Zhang YZ, Xie XL, Zhou QL. J. Am. Chem. Soc. 2013; 135: 14094
  • 20 Chen D, Zhang X, Qi WY, Xu B, Xu MH. J. Am. Chem. Soc. 2015; 137: 5268
  • 21 Kan SB. J, Huang X, Gumulya Y, Chen K, Arnold FH. Nature 2017; 552: 132
  • 22 Huang X, Garcia-Borràs M, Miao K, Kan SB. J, Zutshi A, Houk KN, Arnold FH. ACS Cent. Sci. 2019; 5: 270
  • 23 Chen K, Huang X, Zhang S.-Q, Zhou AZ, Kan SB. J, Hong X, Arnold FH. Synlett 2019; 30: 378
  • 24 Wu J, Panek JS. J. Org. Chem. 2011; 76: 9900
  • 25 Davies HM. L, Huby NJ. S, Cantrell WR. Jr, Olive JL. J. Am. Chem. Soc. 1993; 115: 9468
  • 26 Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
  • 27 Keipour H, Carreras V, Ollevier T. Org. Biomol. Chem. 2017; 15: 5441
  • 28 Keipour H, Ollevier T. Org. Lett. 2017; 19: 5736
  • 29 Tanbouza N, Keipour H, Ollevier T. RSC Adv. 2019; 9: 31241
  • 30 Xu LW, Li L, Lai GQ, Jiang JX. Chem. Soc. Rev. 2011; 40: 1777
  • 31 Gu H, Han Z, Xie H, Lin X. Org. Lett. 2018; 20: 6544
  • 32 Kan SB. J, Lewis RD, Chen K, Arnold FH. Science 2016; 354: 1048
  • 33 Lewis RD, Garcia-Borràs M, Chalkley MJ, Buller AR, Houk KN, Kan SB. J, Arnold FH. Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 7308
  • 34 Antos JM, McFarland JM, Iavarone AT, Francis MB. J. Am. Chem. Soc. 2009; 131: 6301
  • 35 Chan AO, Ho CM, Chong HC, Leung YC, Huang JS, Wong MK, Che CM. J. Am. Chem. Soc. 2012; 134: 2589
  • 36 Srour HF, Le Maux P, Chevance S, Carrie D, Le Yondre N, Simonneaux G. J. Mol. Catal. A: Chem. 2015; 407: 194
  • 37 Yoo J, Park N, Park JH, Park JH, Kang S, Lee SM, Kim HJ, Jo H, Park J.-G, Son SU. ACS Catal. 2015; 5: 350
  • 38 Zhou M, Zhang H, Xiong L, He Z, Wang T, Xu Y, Huang K. Polym. Chem. 2017; 8: 3721
  • 39 Pandit RP, Kim SH, Lee YR. Adv. Synth. Catal. 2016; 358: 3586
  • 40 Empel C, Hock KJ, Koenigs RM. Org. Biomol. Chem. 2018; 16: 7129
  • 41 Wang ZJ, Peck NE, Renata H, Arnold FH. Chem. Sci. 2014; 5: 598
  • 42 Moore EJ, Steck V, Bajaj P, Fasan R. J. Org. Chem. 2018; 83: 7480
  • 43 Cailler LP, Martynov AG, Gorbunova YG, Tsivadze AY, Sorokin AB. J. Porphyrins Phthalocyanines 2019; 23: 497
  • 44 Shen H.-Q, Wu B, Xie H.-P, Zhou Y.-G. Org. Lett. 2019; 21: 2712
  • 45 Yates P. J. Am. Chem. Soc. 1952; 74: 5376
  • 46 Keipour H, Jalba A, Tanbouza N, Carreras V, Ollevier T. Org. Biomol. Chem. 2019; 17: 3098
  • 47 Röske A, Alt I, Plietker B. ChemCatChem 2019; 11: 5260
  • 48 Ren YY, Zhu SF, Zhou QL. Org. Biomol. Chem. 2018; 16: 3087
  • 49 Tyagi V, Bonn RB, Fasan R. Chem. Sci. 2015; 6: 2488
  • 50 Chen K, Zhang S.-Q, Brandenberg OF, Hong X, Arnold FH. J. Am. Chem. Soc. 2018; 140: 16402
  • 51 Doyle MP, Griffin JH, Chinn MS, van Leusen D. J. Org. Chem. 1984; 49: 1917
  • 52 Tyagi V, Sreenilayam G, Bajaj P, Tinoco A, Fasan R. Angew. Chem. Int. Ed. 2016; 55: 13562
  • 53 Hock KJ, Mertens L, Hommelsheim R, Spitzner R, Koenigs RM. Chem. Commun. 2017; 53: 6577
  • 54 Zhang X, Liu Z, Yang X, Dong Y, Bi X, Virelli M, Zanoni G, Anderson EA, Bi X. Nat. Commun. 2019; 10: 284
  • 55 Ning Y, Zhang X, Gai Y, Dong Y, Sivaguru P, Wang Y, Reddy BR. P, Zanoni G, Bi X. Angew. Chem. Int. Ed. 2020; 59: 6473
  • 56 Xu X, Li C, Tao Z, Pan Y. Green Chem. 2017; 19: 1245
  • 57 Xu X, Li C, Xiong M, Tao Z, Pan Y. Chem. Commun. 2017; 53: 6219
  • 58 Empel C, Hock KJ, Koenigs RM. Chem. Commun. 2019; 55: 338
  • 59 Yan X, Li C, Xu X, Zhao X, Pan Y. Adv. Synth. Catal. 2020; 362: 2005
  • 60 Zou H.-B, Yang H, Liu Z.-Y, Mahmood MH. R, Mei G.-Q, Liu H.-Y, Chang C.-K. Organometallics 2015; 34: 2791
  • 61 Karaca O, Anneser MR, Kueck JW, Lindhorst AC, Cokoja M, Kühn FE. J. Catal. 2016; 344: 213
  • 62 Liu P, Zhu C, Xu G, Sun J. Org. Biomol. Chem. 2017; 15: 7743
  • 63 Abeykoon B, Devic T, Grenèche J.-M, Fateeva A, Sorokin AB. Chem. Commun. 2018; 54: 10308
  • 64 Day J, McKeever-Abbas B, Dowden J. Angew. Chem. Int. Ed. 2016; 55: 5809
  • 65 Douglas T, Pordea A, Dowden J. Org. Lett. 2017; 19: 6396
  • 66 Ma C, Chen J, Xing D, Sheng Y, Hu W. Chem. Commun. 2017; 53: 2854
  • 67 Zhou K, Bao M, Huang J, Kang Z, Xu X, Hu W, Qian Y. Org. Biomol. Chem. 2020; 18: 409
  • 68 Li J, Zhang D, Chen J, Ma C, Hu W. ACS Catal. 2020; 10: 4559
  • 69 Zheng J, Qi J, Cui S. Org. Lett. 2016; 18: 128
  • 70 Shi X, Zhang L, Yang P, Sun H, Zhang Y, Xie C, Zhen O.-y, Wang M. Tetrahedron Lett. 2018; 59: 1200
  • 71 Batista VF, Pinto D. C. G. A, Silva AM. S. ACS Cat. 2020; 10: 10096