CC BY-NC-ND 4.0 · Synthesis 2021; 53(02): 332-337
DOI: 10.1055/s-0040-1707288
special topic
Functional Organic Molecules

Synthesis, Spectral Characterization and Crystal Structure of Chlororhodibalamin: A Synthesis Platform for Rhodium Analogues of Vitamin B12 and for Rh-Based Antivitamins B12

Florian J. Widner
a   Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria   Email: bernhard.kraeutler@uibk.ac.at
,
Christoph Kieninger
a   Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria   Email: bernhard.kraeutler@uibk.ac.at
,
Klaus Wurst
b   Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
,
Evelyne Deery
c   School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
,
Andrew D. Lawrence
c   School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
,
Martin J. Warren
c   School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
d   Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
,
a   Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria   Email: bernhard.kraeutler@uibk.ac.at
› Author Affiliations
Funding by the Austrian Science Fund (FWF, projects No. P-28892 and P-30359 to BK), as well as by the Biotechnology and Biological Sciences Research Council (BBSRC, grant number BB/S002197/1 to MJW) and Royal Society (INF\R2\180062 to MJW) is gratefully acknowledged.


Abstract

Chlororhodibalamin (ClRhbl), a rhodium analogue of vitamin B12 (cyanocobalamin), was prepared in 84% yield by metalation of the metal-free B12 ligand hydrogenobalamin using the RhI-complex [Rh(CO)2Cl]2. ClRhbl was identified and characterized by UV/Vis, circular dichroism, high-resolution mass and heteronuclear NMR spectra. The RhIII-corrin ClRhbl features the ‘base-on’ architecture of vitamin B12. X-ray analysis of single crystals of ClRhbl have revealed its detailed 3D-geometry and close structural similarity to the CoIII-analogue chlorocobalamin (ClCbl). ClRhbl is a versatile starting material for the preparation of other rhodibalamins, among them the organometallic derivatives adenosylrhodibalamin and methylrhodibalamin, the Rh analogues of the important coenzyme and cofactor forms of B12, adenosylcobalamin and methylcobalamin.

Supporting Information



Publication History

Received: 26 July 2020

Accepted after revision: 27 August 2020

Article published online:
05 October 2020

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Present address: Sandoz GmbH, Biochemiestrasse 10, 6336 Langkampfen, Austria
    • 1b Present address: Formycon AG, Fraunhoferstraße 15, 82152 Martinsried/Planegg, Germany
  • 2 Eschenmoser A. Angew. Chem., Int. Ed. Engl. 1988; 27: 5
  • 3 Kräutler B, Arigoni D, Golding BT. Vitamin B12 and B12-Proteins . Wiley–VCH; Weinheim: 1998
  • 4 Banerjee R. Chemistry and Biochemistry of B12 . John Wiley & Sons; New York/Chichester: 1999
  • 5 Banerjee R, Ragsdale SW. Annu. Rev. Biochem. 2003; 72: 209
  • 6 Gruber K, Puffer B, Kräutler B. Chem. Soc. Rev. 2011; 40: 4346
  • 7 Kräutler B., Puffer B., Vitamin B12-Derivatives: Organometallic Catalysts, Cofactors and Ligands of Bio-Macromolecules, In Handbook of Porphyrin Science, Vol. 25; Kadish KM, Smith KM, Guilard R. World Scientific; Singapore: 2012: 133-265
  • 8 Pratt JM. The Roles of Co, Corrin and Protein. I. Co-Ligand Bonding and the Trans Effect. In Chemistry and Biochemistry of B12 . Banerjee R. John Wiley & Sons; New York: 1999: 73-112
  • 9 Koppenhagen VB. Metal-Free Corrinoids and Metal Insertion . In B12, Vol. 25. Dolphin D. John Wiley & Sons; New York: 1982: 105-150
  • 10 Widner FJ, Lawrence AD, Deery E, Heldt D, Frank S, Gruber K, Wurst K, Warren MJ, Kräutler B. Angew. Chem. Int. Ed. 2016; 55: 11281
  • 11 Kieninger C, Baker JA, Podewitz M, Wurst K, Jockusch S, Lawrence AD, Deery E, Gruber K, Liedl KR, Warren MJ, Krautler B. Angew. Chem. Int. Ed. 2019; 58: 14568
  • 12 Koppenhagen VB, Elsenhans B, Wagner F, Pfiffner JJ. J. Biol. Chem. 1974; 249: 6532
  • 13 Bröring M, Tejero EC, Pfister A, Brandt CD, Torrente JJ. P. Chem. Commun. 2002; 3058
  • 14 da Silva JJ. R. F, Williams RJ. P. The Biological Chemistry of the Elements . Clarendon Press; Oxford: 1991: 400
  • 15 Kräutler B. Chem. Eur. J. 2015; 21: 11280
  • 16 Kieninger C, Deery E, Lawrence AD, Podewitz M, Wurst K, Nemoto-Smith E, Widner FJ, Baker JA, Jockusch S, Kreutz CR, Liedl KR, Gruber K, Warren MJ, Kräutler B. Angew. Chem. Int. Ed. 2019; 58: 10756
  • 17 Kieninger C, Wurst K, Podewitz M, Stanley M, Deery E, Lawrence AD, Liedl KR, Warren MJ, Kräutler B. Angew. Chem. Int. Ed. 2020; DOI: https://doi.org/10.1002/anie.202008407.
  • 18 Cotton FA, Wilkinson G. Advanced Inorganic Chemistry . Interscience Publishers; New York: 1972
  • 19 Collman JP, Hegedus LS, Norton JR, Finke RG. Principles and Applications of Organotransition Metal Chemistry . Oxford University Press; Oxford: 1987
  • 20 Blaser HU, Winnacker EL, Fischli A, Hardegger B, Bormann D, Hashimoto N, Schossig J, Keese R, Eschenmoser A. Helv. Chim. Acta 2015; 98: 1845
  • 21 Eschenmoser A. Q. Rev., Chem. Soc. 1970; 24: 366
  • 22 Pratt JM. Inorganic Chemistry of Vitamin 12. Academic Press; New York: 1972
  • 23 X-ray crystal data of ClRhbl have been deposited at the Cambridge Crystallographic Data Centre. CCDC 2017112 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. See the Supporting Information for the CIF file with respect to the structure analysis of ClRhbl.
  • 24 Randaccio L, Furlan M, Geremia S, Slouf M. Inorg. Chem. 1998; 37: 5390
  • 25 Hannak RB, Gschösser S, Wurst K, Kräutler B. Monatsh. Chem. 2007; 138: 899
  • 26 Cordero B, Gomez V, Platero-Prats AE, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S. Dalton Trans. 2008; 2832
  • 27 Randaccio L, Geremia S, Nardin G, Würges J. Coord. Chem. Rev. 2006; 250: 1332
  • 28 Pett VB, Liebman MN, Murray-Rust P, Prasad K, Glusker JP. J. Am. Chem. Soc. 1987; 109: 3207
  • 29 Kratky C, Kräutler B. Molecular Structure of B12 Cofactors and other B12 Derivatives. In Chemistry and Biochemistry of B12 . Banerjee R. John Wiley & Sons; New York/Chichester: 1999: 9-41
  • 30 Jugder BE, Ertan H, Lee M, Manefield M, Marquis CP. Trends Biotechnol. 2015; 33: 595
  • 31 Payne KA. P, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SE. J, Leys D. Nature 2015; 517: 513
  • 32 Kunze C, Bommer M, Hagen WR, Uksa M, Dobbek H, Schubert T, Diekert G. Nat. Commun. 2017; 8: 15858
  • 33 Zelder F, Sonnay M, Prieto L. ChemBioChem 2015; 16: 1264
  • 34 Carmel R, Koppenhagen VB. Arch. Biochem. Biophys. 1977; 184: 135
  • 35 Interest in antivitamins B12 (see ref. 33) has induced the Zelder group36 to explore a remarkable alternative approach to transition-metal analogues of vitamin B12, starting with a 5,6-seco-5,6-dioxo-cobalamin from photooxygenolysis of vitamin B12.37 In their approach, chemical extrusion of cobalt from the 5,6-seco-5,6-dioxo-cobalamin, followed by reductive ring closure, gave a first 5,6-dihydroxy-5,6-dihydrohydrogenobalamin, which was metallated using NiSO4, furnishing a 5,6-dihydroxy-5,6-dihydronibalamin.
  • 36 Brenig C, Prieto L, Oetterli R, Zelder F. Angew. Chem. Int. Ed. 2018; 57: 16308
  • 37 Kräutler B, Stepanek R. Angew. Chem., Int. Ed. Engl. 1985; 24: 62
  • 38 Perrone P, Daverio F, Valente R, Rajyaguru S, Martin JA, Lévêque V, Pogam SL, Najera I, Klumpp K, Smith DB, McGuigan C. J. Med. Chem. 2007; 50: 5463