Synthesis
DOI: 10.1055/s-0040-1707342
short review
© Georg Thieme Verlag Stuttgart · New York

Reductive Cross-Coupling of Vinyl Electrophiles

Xiaobo Pang
,
Xuejing Peng
,
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China   Email: shuxingzh@lzu.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China for their financial support (21772072, 21502078).
Further Information

Publication History

Received: 20 May 2020

Accepted after revision: 25 June 2020

Publication Date:
11 August 2020 (online)


Abstract

The synthesis of alkenes (olefins) is a central subject in the synthetic community. The transition-metal-catalyzed reductive cross-coupling of vinyl electrophiles has emerged as a promising tool to produce alkenes with improved flexibility, structural complexity, and functionality tolerance. In this review, we summarized the progress in this field with respect to cross-electrophile couplings and reductive Heck reactions using vinyl electrophiles.

1 Introduction

2 Cross-Electrophile Coupling of Vinyl Electrophiles

3 Reductive Heck Reaction of Vinyl Electrophiles

4 Summary and Outlook

 
  • References

  • 2 For a review of the synthesis of alkenes see: Science of Synthesis, Vol. 47a and 47b. de Meijere A. Thieme; Stuttgart: 2009

    • Recent elegant reviews, see:
    • 4a Knappke CE. I, Grupe S, Gartner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
    • 4b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
    • 4c Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 4d Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
    • 4e Lucas EL, Jarvo ER. Nat. Rev. Chem. 2017; 1: 65
    • 4f Richmond E, Moran J. Synthesis 2018; 50: 499
    • 5a Wurtz A. Ann. Chem. Pharm. 1855; 96: 364
    • 5b Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174

      Some pioneering work:
    • 6a Gomes P, Gosmini C, Périchon J. Org. Lett. 2003; 5: 1043
    • 6b Everson DA, Shrestha R, Weix DJ. J. Am. Chem. Soc. 2010; 132: 920
    • 6c Wang S, Qian Q, Gong H. Org. Lett. 2012; 14: 3352
    • 6d Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
    • 7a Heck RF. Acc. Chem. Res. 1979; 12: 146
    • 7b Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 7c The Mizoroki–Heck Reaction . Oestreich M. Wiley; Chichester: 2009
    • 7d Oxtoby LJ, Gurak JA. Jr, Wisniewski SR, Eastgate MD, Engle KM. Trends Chem. 2019; 1: 572
    • 8a Czaplik WM, Mayer M, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2009; 48: 607
    • 8b Krasovskiy A, Duplais C, Lipshutz BH. J. Am. Chem. Soc. 2009; 131: 15592
    • 8c Cao Z.-C, Luo Q.-Y, Shi Z.-J. Org. Lett. 2016; 18: 5978
  • 9 Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894
  • 10 Xiao L.-J, Ye M.-C, Zhou Q.-L. Synlett 2019; 30: 361
    • 11a Conan A, Sibille S, d’Incan E, Périchon J. J. Chem. Soc., Chem. Commun. 1990; 48
    • 11b Durandetti M, Nedelec J.-Y, Périchon J. J. Org. Chem. 1996; 61: 1748
    • 11c Cannes C, Condon S, Durandetti M, Périchon J, Nedelec J.-Y. J. Org. Chem. 2000; 65: 4575
    • 12a Gosmini C, Bégouin J.-M, Moncomble A. Chem. Commun. 2008; 3221
    • 12b Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
  • 13 Gomes P, Gosmini C, Périchon J. J. Org. Chem. 2003; 68: 1142
  • 14 Moncomble A, Le Floch P, Lledos A, Gosmini C. J. Org. Chem. 2012; 77: 5056
    • 15a Bassler DP, Alwali A, Spence L, Beale O, Beng TK. J. Organomet. Chem. 2015; 780: 6
    • 15b Beng TK, Sincavage K, Silaire AW. V, Alwali A, Bassler DP, Spence LE, Beale O. Org. Biomol. Chem. 2015; 13: 5349
  • 16 Cai Y, Benischke AD, Knochel P, Gosmini C. Chem. Eur. J. 2017; 23: 250
  • 17 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
  • 18 Everson DA, Jones BA, Weix DJ. J. Am. Chem. Soc. 2012; 134: 6146
  • 19 Johnson KA, Biswas S, Weix DJ. Chem. Eur. J. 2016; 22: 7399
    • 20a Gu J, Qiu C, Qian Q, Lin K, Gong H. Synthesis 2017; 49: 1867
    • 20b Qiu C, Yao K, Zhang X, Gong H. Org. Biomol. Chem. 2016; 14: 11332
  • 21 Biswas S, Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
  • 22 Liu J, Gong H. Org. Lett. 2018; 20: 7991
  • 23 Liu J, Lei C, Gong H. Sci. China Chem. 2019; 62: 1492
  • 24 Wang X, Ma G, Peng Y, Pitsch CE, Moll BJ, Ly TD, Wang X, Gong H. J. Am. Chem. Soc. 2018; 140: 14490
  • 25 Lu X, Wang Y, Zhang B, Pi J.-J, Wang X.-X, Gong T.-J, Xiao B, Fu Y. J. Am. Chem. Soc. 2017; 139: 12632
  • 26 Xu H, Zhao C, Qian Q, Deng W, Gong H. Chem. Sci. 2013; 4: 4022
  • 27 Yan X.-B, Li C.-L, Jin W.-J, Guo P, Shu X.-Z. Chem. Sci. 2018; 9: 4529
    • 28a Ye Y, Chen H, Sessler JL, Gong H. J. Am. Chem. Soc. 2019; 141: 820
    • 28b Chen H, Ye Y, Tong W, Fang J, Gong H. Chem. Commun. 2020; 56: 45
    • 28c Friese FW, Studer A. Angew. Chem. Int. Ed. 2019; 58: 9561
  • 29 Gao M, Sun D, Gong H. Org. Lett. 2019; 21: 1645
  • 30 Ye Y, Chen H, Yao K, Gong H. Org. Lett. 2020; 22: 2070
    • 31a Noble A, McCarver SJ, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624
    • 31b Yu W, Chen L, Tao J, Wang T, Fu J. Chem. Commun. 2019; 55: 5918
    • 31c Zhou Q.-Q, Dusel SJ. S, Lu L.-Q, König B, Xiao W.-J. Chem. Commun. 2019; 55: 107
    • 32a Cherney AH, Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
    • 32b Suzuki N, Hofstra JL, Poremba KE, Reisman SE. Org. Lett. 2017; 19: 2150
    • 32c Hofstra JL, Cherney AH, Ordner CM, Reisman SE. J. Am. Chem. Soc. 2018; 140: 139
    • 32d DeLano TJ, Reisman SE. ACS Catal. 2019; 9: 6751
  • 33 Ackerman LK. G, Anka-Lufford LL, Naodovic M, Weix DJ. Chem. Sci. 2015; 6: 1115
  • 34 Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
  • 35 Liu J, Ren Q, Zhang X, Gong H. Angew. Chem. Int. Ed. 2016; 55: 15544
    • 36a Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
    • 36b Rosen BM, Quasdorf KW, Wilkson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
    • 36c Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
    • 36d Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 36e Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 36f Tollefson EJ, Hanna LE, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
  • 37 Jia X.-G, Guo P, Duan J, Shu X.-Z. Chem. Sci. 2018; 9: 640
    • 38a Duan J, Du Y.-F, Pang X, Shu X.-Z. Chem. Sci. 2019; 10: 8706
    • 38b Pan F.-F, Guo P, Li C.-L, Su P, Shu X.-Z. Org. Lett. 2019; 21: 3701
    • 38c Tian Z.-X, Qiao J.-B, Xu G.-L, Pang X, Qi L, Ma W.-Y, Zhao Z.-Z, Duan J, Du Y.-F, Su P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 7637
    • 38d He R.-D, Li C.-L, Pan Q.-Q, Guo P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 12481
  • 39 See ref 2 and: Preparation of Alkenes . Williams JM. J. Oxford University Press; Oxford: 1996
  • 40 Pearson RG, Figdore PE. J. Am. Chem. Soc. 1980; 102: 1541
    • 41a Prinsell MR, Everson DA, Weix DJ. Chem. Commun. 2010; 46: 5743
    • 41b Do H.-Q, Chandrashekar ER. R, Fu GC. J. Am. Chem. Soc. 2013; 135: 16288
    • 41c Liang Z, Xue W, Lin K, Gong H. Org. Lett. 2014; 16: 5620
  • 42 Arendt KM, Doyle AG. Angew. Chem. Int. Ed. 2015; 54: 9876
  • 43 Chen H, Sun S, Liao X. Org. Lett. 2019; 21: 3625
  • 44 Qiao J.-B, Zhao Z.-Z, Zhang Y.-Q, Yin K, Tian Z.-X, Shu X.-Z. Org. Lett. 2020; 22: 5085
    • 45a Zhang Y, Rovis T. J. Am. Chem. Soc. 2004; 126: 15964
    • 45b Malapit CA, Bour JR, Brigham CE, Sanford MS. Nature 2018; 563: 100
    • 46a Ackerman LK. G, Lovell MM, Weix DJ. Nature 2015; 524: 454
    • 46b Olivares AM, Weix DJ. J. Am. Chem. Soc. 2018; 140: 2446

      A review:
    • 47a Ping Y, Kong W. Synthesis 2020; 52: 979

    • Selected work:
    • 47b Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
    • 47c Jin Y, Wang C. Angew. Chem. Int. Ed. 2019; 58: 6722
    • 47d Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
  • 48 Ma T, Chen Y, Li Y, Ping Y, Kong W. ACS Catal. 2019; 9: 9127

    • Selected recent elegant work:
    • 49a Li B.-J, Xu L, Wu Z.-H, Guan B.-T, Sun C.-L, Wang B.-Q, Shi Z.-J. J. Am. Chem. Soc. 2009; 131: 14656
    • 49b Gärtner D, Stein AL, Grupe S, Arp J, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 10545
    • 49c Li J, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 11436
    • 49d Li J, Ren Q, Cheng X, Karaghiosoff K, Knochel P. J. Am. Chem. Soc. 2019; 141: 18127
  • 50 Gomes P, Gosmini C, Périchon J. Tetrahedron 2003; 59: 2999
  • 51 Amatore M, Gosmini C, Périchon J. Eur. J. Org. Chem. 2005; 989
    • 52a Peng Y, Luo L, Yan C.-S, Zhang J.-J, Wang Y.-W. J. Org. Chem. 2013; 78: 10960
    • 52b Xu X.-B, Liu J, Zhang J.-J, Wang Y.-W, Peng Y. Org. Lett. 2013; 15: 550
    • 52c Luo L, Zhang J.-J, Ling W.-J, Shao Y.-L, Wang Y.-W, Peng Y. Synthesis 2014; 46: 1908
    • 52d Peng Y, Xiao J, Xu X.-B, Duan S.-M, Ren L, Shao Y.-L, Wang Y.-W. Org. Lett. 2016; 18: 5170
    • 52e Xiao J, Cong X.-W, Yang G.-Z, Wang Y.-W, Peng Y. Org. Lett. 2018; 20: 1651
    • 52f Luo L, Zhai X.-Y, Wang Y.-W, Peng Y, Gong H. Chem. Eur. J. 2019; 25: 989
  • 53 Li Y, Ding Z, Lei A, Kong W. Org. Chem. Front. 2019; 6: 3305
  • 54 McGeough CP, Strom AE, Jamison TF. Org. Lett. 2019; 21: 3606
  • 55 Burns B, Grigg R, Ratananukul P, Sridharan V, Stevenson P, Worakun T. Tetrahedron Lett. 1988; 29: 4329
  • 56 Hou L, Yuan Y, Tong X. Org. Biomol. Chem. 2017; 15: 4803
  • 57 Liang R.-X, Yang R.-Z, Liu R.-R, Jia Y.-X. Org. Chem. Front. 2018; 5: 1840
  • 58 Arcadi A, Marinelli F, Bernocchi E, Cacchi S, Ortar G. J. Organomet. Chem. 1989; 368: 249
  • 59 Ozawa F, Kobatake Y, Kubo A, Hayashi T. J. Chem. Soc., Chem. Commun. 1994; 1323
  • 60 Saini V, O’Dair M, Sigman MS. J. Am. Chem. Soc. 2015; 137: 608
  • 61 Ghosh T. ChemistrySelect 2019; 4: 4747
  • 62 Ichikawa M, Takahashi M, Aoyagi S, Kibayashi C. J. Am. Chem. Soc. 2004; 126: 16553
  • 63 Dounay AB, Humphreys PG, Overman LE, Wrobleski AD. J. Am. Chem. Soc. 2008; 130: 5368
  • 64 Gao P, Cook SP. Org. Lett. 2012; 14: 3340
  • 65 Hu P, Chi HM, DeBacker KC, Gong X, Keim JH, Hsu IT, Snyder SA. Nature 2019; 569: 703
  • 66 Yu S, Berner OM, Cook JM. J. Am. Chem. Soc. 2000; 122: 7827
  • 67 Zheng Y, Yue B.-B, Wei K, Yang Y.-R. J. Org. Chem. 2018; 83: 4867