Synthesis 2020; 52(24): 3818-3836
DOI: 10.1055/s-0040-1707355
special topic
Recent Advances in Metal-Catalyzed Ring Construction

Recent Advances in Cycloaddition Reactions with Alkynes to Construct Heterocycles

Jing-Hao Qin
a  State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. of China   Email: [email protected]   Email: [email protected]
,
Jin-Heng Li
a  State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. of China   Email: [email protected]   Email: [email protected]
b  Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China
c  State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China
,
De-Lie An
a  State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. of China   Email: [email protected]   Email: [email protected]
› Author Affiliations
This research was supported by the National Natural Science Foundation of China (Nos. 21625203 and 21871126).


Abstract

Heterocyclic compounds, especially N-heterocycles and O-heterocycles, are prominent structural motifs present in numerous natural products and medically and/or economically important compounds. This review aims to describe the development of transition-metal-catalyzed cycloaddition reactions of functionalized m-atom partners with alkynes to access a wide range of five-, six-, and seven-membered heterocycles, that is functionalized N-heterocycles and O-heterocycles such as azepines, isoquinolines, isocoumarins, spiroheterocycles, indoles, furans, and pyrroles, in a selectively controlled manner with an emphasis on scope and limitations and with a discussion of the mechanisms.

1 Introduction

2 Intermolecular Cycloaddition To Construct Azepine Derivatives

2.1 [5+2] Cycloaddition

2.2 [3+2+2] Cycloaddition

2.3 [3+2]/[5+2] Cycloaddition

3 Intermolecular [4+2] Cycloaddition To Construct Isoquinolines or Isocoumarins

4 Intermolecular [3+2] Cycloaddition To Construct Spirohetero­cyclic Compounds, Indoles, Furans, and Pyrroles

5 Summary and Outlook



Publication History

Received: 30 April 2020

Accepted: 24 July 2020

Publication Date:
13 October 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews, see:
    • 1a Kametani T, Fukumoto K. Heterocycles 1975; 3: 931
    • 1b Heterocyclic Compounds: Azepines . Renfroe B, Harrington C, Proctor GR. Wiley Interscience; New York: 1984
    • 1c Dictionary of Pharmacological Agents . Ganellin CR, Triggle DJ. Chapman & Hall/CRC; London: 1996
    • 1d Kulanthaivel P, Hallock YF, Boros C, Hamilton SM, Janzen WP, Ballas LM, Loomis CR, Jiang JB, Katz B, Steiner JR, Clardy J. J. Am. Chem. Soc. 1993; 115: 6452
    • 1e Freidinger RM, Verber DF, Perlow DS, Brooks JR, Saperstein R. Science 1980; 210: 656
    • 1f The Alkaloids, Vol. 9. Götz M, Edwards OE, Manske RH. F. Academic Press; New York: 1967: 545
    • 1g Ye Y, Qin G.-W, Xu R.-S. Phytochemistry 1994; 37: 1205
    • 1h Hu J, Miller MJ. Tetrahedron Lett. 1995; 36: 6379
    • 1i Song Y.-F, Qu Y, Cao X.-P, Zhang W. Mar. Biotechnol. 2011; 13: 868
    • 1j Villani FJ. J. Med. Chem. 1967; 10: 497
    • 1k Gijsen HJ. M, Berthelot D, Zaja M, Brône B, Geuens I, Mercken M. J. Med. Chem. 2010; 53: 7011
    • 1l Tomasi S, Renault J, Martin B, Duhieu S, Cerec V, Roch ML, Uriac P, Delcros J.-G. J. Med. Chem. 2010; 53: 7647
    • 2a Hepatitis c virus (HCV) inhibitors: Zhang Y, Zhang J, Xie H, Ren Q, Wu X, Luo H, Fu C, Hu B, Li S, Tang C, Lei Y, Yu Q, Fang Q, Qang C. WO 2014048072A1, 2014
    • 2b Inhibitors of beta-secretase: Dillard LW, Yuan J, Leftheris K, Venkatraman S, Wu G, Jia L, Xu Z, Cacatian S, Morales-Ramos A, Singh S, Zheng Y. WO 2011106414A1, 2011
    • 2c Ullrich T, Krich S, Binder D, Mereiter K, Anderson DJ, Meyer MD, Pyerin M. J. Med. Chem. 2002; 45: 4047
    • 2d Herbicidal action: Waespe HS. R, Guy RE, Van L, Sipido VK. WO 9209577A1, 1992
    • 2e Kantarjian HM, Talpaz M, Santini V, Murgo A, Cheson B, O’Brien SM. Cancer 2001; 92: 1591
    • 2f Levy V, Zohar S, Bardin C, Vekhoff A, Chaoui D, Rio B, Legrand O, Sentenac S, Rousselot P, Raffoux E, Chast F, Chevret S, Marie JP. Br. J. Cancer 2006; 95: 253
    • 2g Sacchi S, Kantarjian HM, O’Brien S, Cortes J, Rios MB, Giles FJ, Beran M, Koller CA, Keating MJ, Talpaz M. Cancer 1999; 86: 2632
    • 2h Shifrin VI, Anderson P. J. Biol. Chem. 1999; 274: 13985
    • 4a Stogryn EL, Brois SJ. J. Am. Chem. Soc. 1967; 89: 605
    • 4b Hassner A, Costa RD, McPhail AT, Butler W. Tetrahedron Lett. 1981; 22: 3691
    • 5a Wender PA, Pedersen TM, Scanio MJ. C. J. Am. Chem. Soc. 2002; 124: 15154
    • 5b Montero-Campillo MM, Cabaleiro-Lago EM, Rodríguez-Otero J. J. Phys. Chem. A 2008; 112: 9068
  • 6 Zhou M.-B, Song R.-J, Wang C.-Y, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 10805
  • 7 Kunkely H, Vogler A. Inorg. Chem. Commun. 2004; 7: 400
  • 8 Hu C, Song R.-J, Hu M, Yang Y, Li J.-H, Luo SL. Angew. Chem. Int. Ed. 2016; 55: 10423
  • 9 Zhou M.-B, Pi R, Teng F, Li Y, Li J.-H. Chem. Commun. 2019; 55: 11295
  • 10 Zuo Z, Liu J, Nan J, Fan L, Sun W, Wang Y, Luan X. Angew. Chem. Int. Ed. 2015; 54: 15385
  • 11 Li T, Xu F, Li X, Wang C, Wan B. Angew. Chem. Int. Ed. 2016; 55: 2861
  • 12 Zhou M.-B, Song R.-J, Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 4196
    • 13a Yang Y, Zhou M.-B, Ouyang XH, Pi R, Song R.-J, Li J.-H. Angew. Chem. Int. Ed. 2015; 54: 6595
    • 13b Zhang Z, Yang S, Li J, Liao X. J. Org. Chem. 2016; 81: 9639
  • 14 Kahar N, Jadhav P, Reddy RV. R, Dawande S. Chem. Commun. 2020; 56: 1207
  • 15 Li Y, Hu M, Li J.-H. ACS Catal. 2017; 7: 6757
  • 16 Li Y, Li J.-H. Org. Lett. 2018; 20: 5323
  • 17 Feng J.-J, Lin T.-Y, Zhu C.-Z, Wang H, Wu H.-H, Zhang J.-L. J. Am. Chem. Soc. 2016; 138: 2178
  • 18 Guimond N, Fagnou K. J. Am. Chem. Soc. 2009; 131: 12050
  • 19 Wang Y.-F, Toh KK, Lee J.-Y, Chiba S. Angew. Chem. Int. Ed. 2011; 50: 5927
  • 20 Huang X.-C, Yang X.-H, Song R.-J, Li J.-H. J. Org. Chem. 2014; 79: 1025
    • 21a Zhang X, Ouyang X.-H, Li Y, Chen B, Li J.-H. Adv. Synth. Catal. 2019; 361: 4955
    • 21b Zhao Y, Shi C, Su X, Xia W. Chem. Commun. 2020; 56: 5259
  • 22 Sun B, Yoshino T, Kanai M, Matsunaga S. Angew. Chem. Int. Ed. 2015; 54: 12968
  • 23 Wang F, Wang Q, Bao M, Li X.-W. Chin. J. Catal. 2016; 37: 1423
  • 24 Wang F, Qi Z, Sun J, Zhang X, Li X.-W. Org. Lett. 2013; 15: 6290
  • 25 Morimoto K, Hirano K, Satoh T, Miura M. J. Org. Chem. 2011; 76: 9548
  • 26 Nakanowatari S, Ackermann L. Chem. Eur. J. 2014; 20: 5409
  • 27 Luo M.-J, Hu M, Song R.-J, He D.-L, Li J.-H. Chem. Commun. 2019; 55: 1124
  • 28 Luo M.-J, Zhang T.-T, Cai F.-J, Li J.-H, He D.-L. Chem. Commun. 2019; 55: 7251
  • 29 Ouyang X.-H, Hu C, Song R.-J, Li J.-H. Org. Lett. 2018; 20: 4659
  • 30 Pi R, Zhou M.-B, Yang Y, Gao C, Song R.-J, Li J.-H. Chem. Commun. 2015; 51: 13550
  • 31 Zhou M.-B, Pi R, Hu M, Yang Y, Song R.-J, Xia Y, Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 11338
  • 32 Li Y, Pi R, Ouyang X.-H, Song R.-J, Li J.-H. Org. Lett. 2019; 21: 397
  • 33 Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
  • 34 Liang Y.-J, Jiao N. Angew. Chem. Int. Ed. 2016; 55: 4035
  • 35 Cui X, Xu X, Wojtas L, Kim MM, Zhang XP. J. Am. Chem. Soc. 2012; 134: 19981
  • 36 Kuram MR, Bhanuchandra M, Sahoo AK. Angew. Chem. Int. Ed. 2013; 52: 4607
  • 37 Liu J.-Q, Fang Z.-X, Zhang Q, Liu Q, Bi X.-H. Angew. Chem. Int. Ed. 2013; 52: 6953