Synthesis 2020; 52(21): 3162-3188
DOI: 10.1055/s-0040-1707357
special topic
Recent Advances in Amide Bond Formation

Transition Metal and Inner Transition Metal Catalyzed Amide Derivatives Formation through Isocyanide Chemistry

a  Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran   Email: mshiri@alzahra.ac.ir
b  Department of R&D, Pakshoo Industrial Group, Second Alley, Pakistan St., Beheshti Ave., Tehran, Iran
,
Noushin Farajinia-Lehi
a  Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran   Email: mshiri@alzahra.ac.ir
,
Parvin Salehi
a  Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran   Email: mshiri@alzahra.ac.ir
,
Zahra Tanbakouchian
a  Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran   Email: mshiri@alzahra.ac.ir
› Author Affiliations


This paper is dedicated to Emeritus Professor, Dr. Nasser Iranpoor (Shiraz University) on the occasion of his 67th birthday.

Abstract

The synthesis of amides is a substantial research area in organic chemistry because of their ubiquitous presence in natural products and bioactive molecules. The use of easily accessible isocyanides as amidoyl (carbamoyl) synthons in cross-coupling reactions using transition metal and inner transition metöal catalysts is a current trend in this area. Isocyanides, owing to their coordination ability as a ligand and inherent electronic properties for reactions with various partners, have expanded the potential application of these transformations for the preparation of novel synthetic molecules and pharmaceutical candidates. This review gives an overview of the achievements in isocyanide-based transition metal and inner transition metal catalyzed amide formation and discusses highlights of the proposed distinct mechanisms.

1 Introduction

2 Synthesis of Arenecarboxamides

3 Synthesis of Alkanamides

4 Synthesis of Cyclic Amides

5 Formation of Alkynamides

6 Formation of Acrylamide-like Molecules

7 Formation of Ureas and Carbamates

8 Conclusion



Publication History

Received: 04 June 2020

Accepted: 28 July 2020

Publication Date:
15 September 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
    • 2b Wang X. Nat. Catal. 2019; 2: 98
    • 2c Mao F, Ni W, Xu X, Wang H, Wang J, Ji M, Li J. Molecules 2016; 21: 75
    • 3a Reddy TN, de Lima DP. Asian J. Org. Chem. 2019; 8: 1227
    • 3b Chaudhari MB, Gnanaprakasam B. Chem. Asian J. 2019; 14: 76
    • 3c Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 3d Meng G, Shi S, Szostak M. Synlett 2016; 27: 2530
  • 4 Massolo E, Pirola M, Benaglia M. Eur. J. Org. Chem. 2020; 4641
  • 5 Ugi I, Meyr R, Fetzer U, Steinbrückner C. Angew. Chem. 1959; 71: 386
    • 6a Passerini M. Gazz. Chim. Ital. 1921; 51: 126
    • 6b Passerini M. Gazz. Chim. Ital. 1921; 51: 181
    • 7a Bode ML, Gravestock D, Rousseau AL. Org. Prep. Proced. Int. 2016; 48: 89
    • 7b Sharma UK, Sharma N, Vachhani DD, Van der Eycken EV. Chem. Soc. Rev. 2015; 44: 1836
    • 7c Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
    • 7d Multicomponent Reactions in Organic Synthesis . Zhu J, Wang Q, Wang M.-X. Wiley-VCH; Weinheim: 2015
    • 7e Domling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 7f Vaezeh Fathi V, Pegah S, Saeed B. Curr. Org. Chem. 2020; 24: 162
    • 10a Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY. Chem. Rev. 2015; 115: 2698
    • 10b Lang S. Chem. Soc. Rev. 2013; 42: 4867
    • 10c Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257
  • 11 Jiang H, Liu B, Li Y, Wang A, Huang H. Org. Lett. 2011; 13: 1028
  • 12 Perego LA, Fleurat-Lessard P, El Kaïm L, Ciofini I, Grimaud L. Chem. Eur. J. 2016; 22: 15491
  • 13 Khairnar BJ, Bhanage BM. Synthesis 2014; 46: 1236
  • 14 Sarkalr S, Pal R, Roy M, Chatterjee N, Sarkar S, Sen AK. Tetrahedron Lett. 2015; 56: 623
  • 15 Yavari I, Ghazanfarpour-Darjani M, Bayat MJ. Tetrahedron Lett. 2014; 55: 4981
  • 16 Ahmadi F, Mirzaei P, Bazgir A. Tetrahedron Lett. 2017; 58: 4281
  • 17 Yasaei Z, Mohammadpour Z, Shiri M, Tanbakouchian Z, Fazelzadeh S. Front. Chem. 2019; 7: 433
  • 18 Lu F, Chen Z, Li Z, Wang X, Peng X, Li C, Fang L, Liu D, Gao M, Lei A. Org. Lett. 2017; 19: 3954
  • 19 Wang F, Wei T.-Q, Xu P, Wang S.-Y, Ji S.-J. Chin. Chem. Lett. 2019; 30: 379
  • 20 Sharma P, Jain N. Adv. Synth. Catal. 2018; 360: 1932
  • 21 Li Y, Cao J, Zhu Q, Zhang X, Shi G. Russ. J. Gen. Chem. 2016; 86: 668
  • 22 Huang L, Guo H, Pan L, Xie C. Eur. J. Org. Chem. 2013; 6027
  • 23 Liu J.-Q, Shen X, Liu Z, Wang X.-S. Org. Biomol. Chem. 2017; 15: 6314
  • 24 Peng J, Liu L, Hu Z, Huang J, Zhu Q. Chem. Commun. 2012; 48: 3772
  • 25 Khalaj M, Taherkhani M, Mousavi-Safavi SM, Akbari J. Synlett 2018; 29: 94
  • 26 Hu Z, Liang D, Zhao J, Huang J, Zhu Q. Chem. Commun. 2012; 48: 7371
  • 27 Qiu G, Chen C, Yao L, Wu J. Adv. Synth. Catal. 2013; 355: 1579
  • 28 Qiu G, Qiu X, Liu J, Wu J. Adv. Synth. Catal. 2013; 355: 2441
  • 29 Nallapati SB, Prasad B, Sreenivas BY, Sunke R, Poornachandra Y, Kumar CG, Sridhar B, Shivashankar S, Mukkanti K, Pal M. Adv. Synth. Catal. 2016; 358: 3387
  • 30 Prasad B, Nallapati SB, Kolli SK, Sharma AK, Yellanki S, Medisetti R, Kulkarni P, Sripelly S, Mukkanti K, Pal M. RSC Adv. 2015; 5: 62966
  • 31 Pal R, Chatterjee N, Roy M, Sarkar S, Sarkar S, Sen AK. Tetrahedron Lett. 2016; 57: 4956
  • 32 Odabachian Y, Tong S, Wang Q, Wang MX, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 10878
  • 33 Tong S, Zhao S, He Q, Wang Q, Wang MX, Zhu J. Angew. Chem. Int. Ed. 2017; 56: 6599
    • 34a Cao M, Fang Y.-L, Wang Y.-C, Xu X.-J, Xi Z.-W, Tang S. ACS Comb. Sci. 2020; 22: 268
    • 34b Cao M, Teng Q.-H, Xi Z.-W, Liu L.-Q, Gu R.-Y, Wang Y.-C. Org. Biomol. Chem. 2020; 18: 655
  • 35 Qiu G, Wang Q, Zhu J. Org. Lett. 2017; 19: 270
  • 36 Liu J.-Q, Chen X, Shen X, Wang Y, Wang X.-S, Bi X. Adv. Synth. Catal. 2019; 361: 1543
  • 37 Ugi I, Werner B, Domling A. Molecules 2003; 8: 53
  • 38 Ghavami M, Koohi M, Kassaee MZ. J. Chem. Sci. 2013; 125: 1347
  • 39 Okandeji BO, Gordon JR, Sello JK. J. Org. Chem. 2008; 73: 5595
    • 40a Gerhardt WW, Weck M. J. Org. Chem. 2006; 71: 6333
    • 40b Shaabani A, Keshipour S, Shaabani S, Mahyari M. Tetrahedron Lett. 2012; 53: 1641
  • 41 Chandgude AL, Dömling A. Org. Lett. 2017; 19: 1228
  • 42 Basso A, Banfi L, Guanti G, Riva R, Riu A. Tetrahedron Lett. 2004; 45: 6109
    • 43a Riva R. Science 2018; 361: 1072
    • 43b de Graaff C, Ruijter E, Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
  • 44 Zhang J, Yu P, Li S.-Y, Sun H, Xiang S.-H, Wang J, Houk KN, Tan B. Science 2018; 361: eaas8707
  • 45 Caputo S, Basso A, Moni L, Riva R, Rocca V, Banfi L. Beilstein J. Org. Chem. 2016; 12: 139
  • 46 Andreana PR, Liu CC, Schreiber SL. Org. Lett. 2004; 6: 4231
  • 47 Godet T, Bonvin Y, Vincent G, Merle D, Thozet A, Ciufolini MA. Org. Lett. 2004; 6: 3281
    • 48a Lamberth C, Jeanguenat A, Cederbaum F, De Mesmaeker A, Zeller M, Kempf H.-J, Zeun R. Bioorg. Med. Chem. 2008; 16: 1531
    • 48b Kunz H, Pfrengle W. Tetrahedron 1988; 44: 5487
    • 48c Kunz H, Pfrengle W. J. Am. Chem. Soc. 1988; 110: 651
    • 48d Kunz H, Pfrengle W, Sager W. Tetrahedron Lett. 1989; 30: 4109
    • 48e Kunz H, Pfrengle W, Rück K, Sager W. Synthesis 1991; 1039
    • 48f Lehnhoff S, Goebel M, Karl RM, Kloesel R, Ugi I. Angew. Chem. Int. Ed. 1995; 34: 1104
    • 48g Linderman RJ, Binet S, Petrich SR. J. Org. Chem. 1999; 64: 336
    • 48h Ross GF, Herdtweck E, Ugi I. Tetrahedron 2002; 58: 6127
  • 49 Oertel K, Zech G, Kunz H. Angew. Chem. Int. Ed. 2000; 39: 1431
  • 50 Moni L, Banfi L, Basso A, Bozzano A, Spallarossa M, Wessjohann L, Riva R. Molecules 2016; 21: 1153
  • 51 Angyal A, Demjen AS, Weber E, Kovacs AK, Wolfling JN, Puskas LS. G, Kanizsai IN. J. Org. Chem. 2018; 83: 3570
  • 52 Golantsov NE, Nguyen HM, Varlamov AV, Aksenov AV, Voskressensky LG. Chem. Heterocycl. Compd. (Engl. Transl.) 2017; 53: 446
  • 53 Asgari MS, Bahadorikhalili S, Gholami A, Kazemi A, Khoshneviszadeh M, Larijani B, Mahdavi M, Rahimi R, Ranjbar PR, Sepehri S. Chem. Heterocycl. Compd. (Engl. Transl.) 2020; 56: 488
  • 54 Lei C.-H, Zhao L, Wang D.-X, Zhu J, Wang M.-X. Org. Chem. Front. 2014; 1: 909
  • 55 Ye X, Xie C, Pan Y, Han L, Xie T. Org. Lett. 2010; 12: 4240
  • 56 Guerrero I, San Segundo M, Correa A. Chem. Commun. 2018; 54: 1627
  • 57 Chen Y, Feng G. Org. Biomol. Chem. 2015; 13: 4260
    • 58a Xie C, Han L. Tetrahedron Lett. 2014; 55: 240
    • 58b Ye X, Xie C, Huang R, Liu J. Synlett 2012; 409
  • 59 Vila C, Rueping M. Green Chem. 2013; 15: 2056
  • 60 Rueping M, Vila C. Org. Lett. 2013; 15: 2092
  • 61 Rueping M, Vila C, Bootwicha T. ACS Catal. 2013; 3: 1676
  • 62 Brioche J, Masson G, Zhu J. Org. Lett. 2010; 12: 1432
  • 63 Azarifar D, Ghorbani-Vaghei R, Daliran S, Oveisi AR. ChemCatChem 2017; 9: 1992
  • 64 Dighe SU, Kolle S, Batra S. Eur. J. Org. Chem. 2015; 4238
  • 65 Xie L.-G, Dixon DJ. Nat. Commun. 2018; 9: 2841
  • 66 Margrey KA, Nicewicz DA. Acc. Chem. Res. 2016; 49: 1997
    • 67a Gini A, Uygur M, Rigotti T, Alemán J, García Mancheño O. Chem. Eur. J. 2018; 24: 12509
    • 67b Brandhofer T, Gini A, Stockerl S, Piekarski DG, García Mancheño O. J. Org. Chem. 2019; 84: 12992
  • 68 Ito Y, Hirao T, Ohta N, Saegusa T. Tetrahedron Lett. 1977; 18: 1009
  • 69 Qiu G, Mamboury M, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 15377
  • 70 Chen S, Wei WX, Wang J, Xia Y, Shen Y, Wu XX, Jing H, Liang YM. Adv. Synth. Catal. 2017; 359: 3538
  • 71 Yadav J, Reddy BS, Chary DN, Madavi C, Kunwar A. Tetrahedron Lett. 2009; 50: 81
  • 72 Ferrier RJ. Top. Curr. Chem. 2001; 215: 153
  • 73 Mamboury M, Wang Q, Zhu J. Chem. Eur. J. 2017; 23: 12744
  • 74 Yang Q, Li C, Cheng M.-X, Yang S.-D. ACS Catal. 2016; 6: 4715
  • 75 Huang W, Wang Y, Weng Y, Shrestha M, Qu J, Chen Y. Org. Lett. 2020; 22: 3245
  • 76 Kong W, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 9714
  • 77 Chen X, Qiu G, Liu R, Chen D, Chen Z. Org. Chem. Front. 2020; 7: 890
  • 78 Liu J, Liu Z, Liao P, Bi X. Org. Lett. 2014; 16: 6204
  • 79 Bounar H, Liu Z, Zhang L, Guan X, Yang Z, Liao P, Bi X, Li X. Org. Biomol. Chem. 2015; 13: 8723
  • 80 Jiang H, Gao H, Liu B, Wu W. Chem. Commun. 2014; 50: 15348
  • 81 Zhou F, Ding K, Cai Q. Chem. Eur. J. 2011; 17: 12268
  • 82 Yuan H, Liu Z, Shen Y, Zhao H, Li C, Jia X, Li J. Adv. Synth. Catal. 2019; 361: 2009
  • 83 Zhang X, Liu Z, Gao Y, Li F, Tian Y, Li C, Jia X, Li J. Adv. Synth. Catal. 2018; 360: 272
  • 84 Tong S, Piemontesi C, Wang Q, Wang MX, Zhu J. Angew. Chem. Int. Ed. 2017; 56: 7958
  • 85 Thirupathi N, Hari Babu M, Dwivedi V, Kant R, Sridhar Reddy M. Org. Lett. 2014; 16: 2908
  • 86 Ziarati A, Safaei-Ghomi J, Rohani S. Chin. Chem. Lett. 2013; 24: 195
  • 87 Ghasemzadeh MA, Ghasemi-Seresht N. Res. Chem. Intermed. 2015; 41: 8625
  • 88 Maleki A. Tetrahedron 2012; 68: 7827
  • 89 Shaabani A, Hezarkhani Z, Faroghi MT. Monatsh. Chem. 2016; 147: 1963
  • 90 Neo AG, Diaz J, Marcaccini S, Marcos CF. Org. Biomol. Chem. 2012; 10: 3406
  • 91 Shiri M, Ranjbar M, Yasaei Z, Zamanian F, Notash B. Org. Biomol. Chem. 2017; 15: 10073
  • 92 Tanbakouchian Z, Zolfigol MA, Notash B, Ranjbar M, Shiri M. Appl. Organomet. Chem. 2019; 33: e5024
  • 93 Chang J, Liu B, Yang Y, Wang M. Org. Lett. 2016; 18: 3984
  • 94 Pathare RS, Sharma S, Elagandhula S, Saini V, Sawant DM, Yadav M, Sharon A, Khan S, Pardasani RT. Eur. J. Org. Chem. 2016; 5579
  • 95 Tyagi V, Khan S, Giri A, Gauniyal HM, Sridhar B, Chauhan PM. S. Org. Lett. 2012; 14: 3126
    • 96a Mazurkiewicz R. Monatsh. Chem. 1989; 120: 973
    • 96b Wang H, Ganesan A. J. Org. Chem. 1998; 63: 2432
  • 97 Sun H, Tang S, Li D, Zhou Y, Huang J, Zhu Q. Org. Biomol. Chem. 2018; 16: 3893
  • 98 Yang Z, Jiang K, Chen Y.-C, Wei Y. J. Org. Chem. 2019; 84: 3725
  • 99 Liang HW, Yang Z, Jiang K, Ye Y, Wei Y. Angew. Chem. Int. Ed. 2018; 57: 5720
  • 100 Mampuys P, Neumann H, Sergeyev S, Orru RV. A, Jiao H, Spannenberg A, Maes BU. W, Beller M. ACS Catal. 2017; 7: 5549
  • 101 Zhang WZ, Li H, Zeng Y, Tao X, Lu X. Chin. J. Chem. 2018; 36: 112
  • 102 Xu P, Wang F, Wei T.-Q, Yin L, Wang S.-Y, Ji S.-J. Org. Lett. 2017; 19: 4484
  • 103 Biswas S, Khatun R, Dolai M, Haque Biswas I, Haque N, Sengupta M, Islam MS, Islam SM. New J. Chem. 2020; 44: 141
  • 104 Khan I, Singh J, Khan I, Dutt S, Khan S, Tyagi V. ARKIVOC 2019; (v): 279
  • 105 Wang B, He D, Ren B, Yao T. Chem. Commun. 2020; 56: 900
  • 106 Liang Y.-X, Meng X.-H, Yang M, Mehfooz H, Zhao Y.-L. Chem. Commun. 2019; 55: 12519
  • 107 Li Y, Zhao J, Chen H, Liu B, Jiang H. Chem. Commun. 2012; 48: 3545
  • 108 Hu W, Zheng J, Li J, Liu B, Wu W, Liu H, Jiang H. J. Org. Chem. 2016; 81: 12451
  • 109 Li Y, Zou H, Gong J, Xiang J, Luo T, Quan J, Wang G, Yang Z. Org. Lett. 2007; 9: 4057
  • 110 Martínez-Pardo P, Blay G, Escrivá-Palomo A, Sanz-Marco A, Vila C, Pedro JR. Org. Lett. 2019; 21: 4063
  • 111 Chen Y, Wu Y, Shatskiy A, Kan Y, Kärkäs MD, Liu J.-Q, Wang X.-S. Eur. J. Org. Chem. 2020; 3475
  • 112 Shen X, Shatskiy A, Chen Y, Kärkäs MD, Wang X.-S, Liu J.-Q. J. Org. Chem. 2020; 85: 3560
  • 113 Cioc RC, Estevez V, van der Niet DJ, Vande Velde CM. L, Turrini NG, Hall M, Faber K, Ruijter E, Orru RV. A. Eur. J. Org. Chem. 2017; 1262
  • 114 Salehi P, Shiri M. Adv. Synth. Catal. 2019; 361: 118
  • 115 Corey EJ, Fuchs PL. Tetrahedron Lett. 1972; 13: 3769
  • 116 Barnea E, Andrea T, Kapon M, Berthet JC, Ephritikhine M, Eisen MS. J. Am. Chem. Soc. 2004; 126: 10860
    • 117a Komeyama K, Sasayama D, Kawabata T, Takehira K, Takaki K. Chem. Commun. 2005; 634
    • 117b Komeyama K, Sasayama D, Kawabata T, Takehira K, Takaki K. J. Org. Chem. 2005; 70: 10679
  • 118 Zhang W.-X, Nishiura M, Hou Z.-M. Angew. Chem. Int. Ed. 2008; 47: 9700
  • 119 Zhang R, Gu Z.-Y, Wang S.-Y, Ji S.-J. Org. Lett. 2018; 20: 5510
  • 120 He Y, Wang Y, Liang X, Huang B, Wang H, Pan Y.-M. Org. Lett. 2018; 20: 7117
  • 121 Gao M, Zou M, Wang J, Tan Q, Liu B, Xu B. Org. Lett. 2019; 21: 1593
  • 122 Gu Z.-Y, Wang X, Cao J.-J, Wang S.-Y, Ji S.-J. Eur. J. Org. Chem. 2015; 4699
  • 123 Xiong Z, Liang D, Luo S. Org. Chem. Front. 2017; 4: 1103
  • 124 Li J, Liu Y, Li C, Jia X. Adv. Synth. Catal. 2011; 353: 913
  • 125 Hu W, Zheng J, Li M, Wu W, Liu H, Jiang H. Chin. J. Chem. 2018; 36: 712
  • 126 Liu J, Liu Z, Liao P, Zhang L, Tu T, Bi X. Angew. Chem. Int. Ed. 2015; 54: 10618
  • 127 He X, Yu Z, Zuo Y, Yang C, Shang Y. Org. Biomol. Chem. 2017; 15: 7127
  • 128 Liu J, Liu Z, Wu N, Liao P, Bi X. Chem. Eur. J. 2014; 20: 2154
  • 129 Nizami TA, Hua R. Tetrahedron 2018; 74: 3776
  • 130 Gu Z.-Y, Li J.-H, Wang S.-Y, Ji S.-J. Chem. Commun. 2017; 53: 11173
  • 131 Mitra S, Hota SK, Chattopadhyay P. Synthesis 2010; 3899
  • 132 Lazar M, Zhu B, Angelici RJ. J. Phys. Chem. C 2007; 111: 4074
  • 133 Huang X, Xu S, Tan Q, Gao M, Li M, Xu B. Chem. Commun. 2014; 50: 1465
  • 134 Zhu TH, Xu XP, Cao JJ, Wei TQ, Wang SY, Ji SJ. Adv. Synth. Catal. 2014; 356: 509
  • 135 Pri-Bar I, Schwartz J. Chem. Commun. 1997; 347
  • 136 Bu XB, Wang Z, Wang YH, Jiang T, Zhang L, Zhao YL. Eur. J. Org. Chem. 2017; 1132
  • 137 Zhang L, Xiao P, Guan X, Huang Z, Zhang J, Bi X. Org. Biomol. Chem. 2017; 15: 1580