Synthesis 2022; 54(08): 1919-1938
DOI: 10.1055/s-0040-1719900
short review

Recent Advances in Photoinduced Perfluoroalkylation Using Perfluoroalkyl Halides as the Radical Precursors

Ting Liu
,
Jian Liu
,
Jin He
,
Yu Hong
,
Han Zhou
,
Yin-Ling Liu
,
Shi Tang
This work was supported by the National Natural Science Foundation of China (NFSC) (Grant No. 20196011, 21662013) and the Natural Science Foundation of Hunan Province (Grant No. 2018JJ1020).


Abstract

Perfluoroalkylation is one of the most important methods for the introduction of multiple fluorine atoms into organic molecules in a single step. The use of photoinduced technology is a common strategy that uses the outstanding oxidation or reduction ability of a photo­redox catalyst in its excited state to generate perfluoroalkyl radicals from perfluoroalkyl halides. The perfluoroalkyl radicals thus obtained can undergo various subsequent reactions under mild conditions, such as ATRA reaction of alkenes, alkynes, and 1,n-enynes; carbo/heteroperfluoroalkylation of alkenes and isocyanides; and C–H/F perfluoroalkyl­ation. This allows the expedient incorporation of various perfluoroalkyl groups into the molecular motifs. Perfluorinated functional groups are still in demand in pharmaceutical and material sciences; this short review discusses recent advances in photoinduced perfluoroalkylation methodologies and technologies.

1 Introduction

2 Photocatalytic Perfluoroalkylation of Alkenes, Alkynes, and 1,n- Enynes

3 Photocatalytic Carboperfluoroalkylation or Heteroperfluoro­alkylation of Alkenes, Alkynes, Isocyanides, and Hydrazones

4 Photocatalytic ATRE Reactions of Alkenes with Perfluoroalkyl Halides­

5 Photocatalytic C–X (X = H, F) Bond Perfluoroalkylation

6 Continuous Flow Strategies in Photocatalytic Perfluoroalkylation

7 Conclusions



Publication History

Received: 30 October 2021

Accepted after revision: 20 December 2021

Article published online:
21 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ogburn SC. Jr. J. Chem. Educ. 1947; 24: 314
    • 1b Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
    • 1c Johnson BM, Shu Y.-Z, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
    • 1d Xiao Z.-P, Wei W, Liu Q, Wang P.-F, Luo X, Chen F.-Y, Cao Y, Huang H.-X, Liu M.-M, Zhu H.-L. RSC Adv. 2017; 7: 6193
    • 2a Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed. Wiley-VCH; Weinheim: 2013
    • 2b Biomedicinal Aspects of Fluorine Chemistry . Filler R, Kobayashi Y. Elsevier; Amsterdam: 1982
    • 2c Hird M. Chem. Soc. Rev. 2007; 36: 2070
    • 2d Kirk KL. Org. Process Res. Dev. 2008; 12: 305
    • 2e Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ. J. Med. Chem. 1973; 16: 1207
    • 2f Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
    • 2g O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 2h Wang C, Chen Z, Wu W, Mo Y. Chem. Eur. J. 2013; 19: 1436
    • 2i Liu L, Cheng F, Meng C, Zhang A, Zhang M, Xu K, Ishida K, Murakami M. ACS Catal. 2021; 11: 8942
    • 2j Wang Y.-C, Liu L.-Q, Wang G.-M, Ouyang H, Li Y.-J. Green Chem. 2018; 20: 604
    • 2k Wang X, Lei J, Liu Y.-J, Ye Y, Li J.-Z, Sun K. Org. Chem. Front. 2021; 8: 2079
    • 2l Sun K, Wang S.-N, Feng R.-R, Zhang Y.-X, Wang X, Zhang Z.-G, Zhang B. Org. Lett. 2019; 21: 2052
    • 3a Li Y, Tan L, Wang Z.-H, Qian H.-L, Shi Y.-B, Hu W.-P. Org. Lett. 2008; 10: 529
    • 3b Garrett AB. J. Chem. Educ. 1962; 39: 288
    • 3c Matsugi M, Curran DP. J. Org. Chem. 2005; 70: 1636
    • 3d Tattersall FD, Rycroft W, Cumberbatch M, Mason G, Tye S, Williamson DJ, Hale JJ, Mills SG, Finke PE, MacCoss M, Sadowski S, Ber E, Cascieri M, Hill RG, MacIntyre DE, Hargreaves RJ. Neuropharmacology 2000; 39: 652
    • 3e Chauret N, Guay D, Li C, Day S, Silva J, Blouin M, Ducharme Y, Yergey JA, Nicoll-Griffith DA. Bioorg. Med. Chem. Lett. 2002; 12: 2149
    • 3f Robertson JF. R, Come SE, Jones SE, Beex F, Kaufmann M, Makris A, Nortier JW. R, Possinger K, Rutqvist L.-E. Eur. J. Cancer 2005; 41: 346
    • 3g Tong C.-L, Xu X.-H, Qing F.-L. Angew. Chem. Int. Ed. 2021; 60: 22915
    • 3h Luo J, Bi Y.-J, Zhang L.-P, Zhang X.-Y, Liu TL. Angew. Chem. Int. Ed. 2019; 58: 6967
    • 3i Straathof NJ. W, Gemoets HP. L, Wang X, Schouten JC, Hessel V, Noël T. ChemSusChem 2014; 7: 1612
    • 3j Li T.-Y, Benduhn J, Li Y, Jaiser F, Spoltore D, Zeika O, Ma Z, Neher D, Vandewal K, Leo K. J. Mater. Chem. A 2018; 6: 18583
    • 3k Tang S, Li Q.-L, Zhou D, Tang X.-M, Li S.-H. Synth. Commun. 2014; 44: 689
    • 3l Li Q.-L, Tang S, Zhou D, Tang X.-M. Synth. Commun. 2014; 44: 1600
    • 3m Cao M, Teng Q.-H, Xi Z.-W, Liu L.-Q, Gu R.-Y, Wang Y.-C. Org. Biomol. Chem. 2020; 18: 655
    • 4a Curran DP, Luo Z.-Y. J. Am. Chem. Soc. 1999; 121: 9069
    • 4b Curran DP, Wang X, Zhang Q.-S. J. Org. Chem. 2005; 70: 3716
    • 5a Babuněka M, Šimůneka O, Hošeka J, Rybáčkováa M, Cvačkab J, Březinováb A, Kvíčalaa J. J. Fluorine Chem. 2014; 161: 66
    • 5b Ni W.-W, Liu Q, Ren S.-Z, Li W.-Y, Yi L.-L, Jing H, Sheng L.-X, Wan Q, Zhong P.-F, Fang H.-L, Ouyang H, Xiao Z.-P, Zhu H.-L. Bioorg. Med. Chem. 2018; 26: 4145

      For a review on fluorinated radicals, see:
    • 6a Dolbier WR. Chem. Rev. 1996; 96: 1557
    • 6b Nagib DA, Scott ME, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
    • 6c Iqbal NS, Kim E, Cho EJ. J. Org. Chem. 2012; 77: 11383
    • 6d Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
    • 6e Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
    • 6f Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 7a Fang X, Yang X, Yang X, Mao S, Wang Y, Chen G, Wu F. Tetrahedron 2007; 63: 10684
    • 7b Napoli M, Fraccaro C, Conte L, Gambaretto GP, Legnaro E. J. Fluorine Chem. 1992; 57: 219
    • 7c Brace NO. J. Org. Chem. 1963; 28: 3093
    • 7d Tang S, Li Z.-H, Wang M.-W, Li Z.-P, Sheng R.-L. Org. Biomol. Chem. 2015; 13: 5285
    • 7e Yu J, Sheng H.-X, Wang S.-W, Xu Z.-H, Tang S, Chen S.-L. Chem. Commun. 2019; 55: 4578
    • 7f Tang S, Deng Y.-L, Li J, Wang W.-X, Wang Y.-C, Li Z.-Z, Yuan L, Chen S.-L, Sheng R.-L. Chem. Commun. 2016; 52: 4470
    • 7g Zhou D, Li Z.-H, Li J, Li S.-H, Wang M.-W, Luo X.-L, Ding G.-L, Sheng R.-L, Fu M.-J, Tang S. Eur. J. Org. Chem. 2015; 2015: 1606
    • 7h Tang S, Li Z.-H, Zhou D, Deng Y.-L, Ding G.-L, Zhang Q, Liu L.-Y, Li S.-H. Synth. Commun. 2015; 45: 1231
    • 8a Zhang H.-P, Chen Q.-Y, Guo Y, Xiao J.-C. Chem. Soc. Rev. 2012; 41: 4536
    • 8b Luo Q, Liu C.-M, Tong J.-J, Shao Y, Shan W.-Y, Wang H.-H, Zheng H, Cheng J, Wan X.-B. J. Org. Chem. 2016; 81: 3103
    • 8c Zeng R, Fu C, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3888
    • 8d Qi Q, Shen Q, Lu L. J. Am. Chem. Soc. 2012; 134: 6548
    • 8e Xu T, Cheung CW, Hu X. Angew. Chem. Int. Ed. 2014; 53: 4910
    • 8f Zhang B, Studer A. Org. Lett. 2014; 16: 3990
    • 8g Li Z.-D, García-Domínguez A, Nevado C. J. Am. Chem. Soc. 2015; 137: 11610
    • 8h Tu H.-Y, Wang F, Huo L.-P, Li Y.-B, Zhu S.-Q, Zhao X, Li H, Qing F.-L, Chu L. J. Am. Chem. Soc. 2020; 142: 9604
    • 8i Xia X.-F, Yu J, Wang D. Adv. Synth. Catal. 2018; 360: 562
    • 8j Zhang Y, Geng H.-Q, Wu X.-F. Angew. Chem. Int. Ed. 2021; 60: 24292
    • 9a Chatterjee T, Iqbal N, You Y.-M, Cho EJ. Acc. Chem. Res. 2016; 49: 2284
    • 9b Iqbal N, Jung J, Park S, Cho EJ. Angew. Chem. Int. Ed. 2014; 53: 539
    • 10a Min Y, Sheng J, Yu J.-L, Ni S.-X, Ma G.-B, Gong H.-G, Wang X.-S. Angew. Chem. Int. Ed. 2021; 60: 9947
    • 10b Sheng J, Ni H.-Q, Zhang H.-R, Zhang K.-F, Wang Y.-N, Wang X.-S. Angew. Chem. Int. Ed. 2018; 57: 7634
    • 11a Koike T, Akita M. Top. Catal. 2014; 57: 967
    • 11b Barata-Vallejo S, Bonesi SM, Postigo A. Org. Biomol. Chem. 2015; 13: 11153
    • 12a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 12b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 13a Schultz DM, Yoon TP. Science 2014; 343: 6147
    • 13b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 14a Condie AG, González-Gómez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
    • 14b Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 15a Twilton J, Christensen M, DiRocco DA, Ruck RT, Davies IW, MacMillan DW. C. Angew. Chem. Int. Ed. 2018; 57: 5369
    • 15b Bacauanu V, Cardinal B, Yamauchi M, Kondo M, Fernández DF, Remy R, MacMillan DW. C. Angew. Chem. Int. Ed. 2018; 57: 12543
  • 16 Courant T, Masson G. J. Org. Chem. 2016; 81: 6945
    • 17a Kharasch MS, Skell PS, Fischer P. J. Am. Chem. Soc. 1948; 70: 1055
    • 17b Besset T, Poisson T, Pannecoucke X. Eur. J. Org. Chem. 2015; 2015: 2765
    • 17c Yorimitsu H, Shinokubo H, Matsubara S, Oshima K, Omoto K, Fujimoto H. J. Org. Chem. 2001; 66: 7776
    • 17d Weidner GK, Giroult A, Panchaud P, Renaud P. J. Am. Chem. Soc. 2010; 132: 17511
    • 17e Cao M, Fang Y, Wang Y, Xu X, Xi Z, Tang S. ACS Comb. Sci. 2020; 22: 268
    • 17f Wang Y, Xie Y, Qu H, Wang H, Pan Y, Huang F. J. Org. Chem. 2014; 79: 4463
    • 17g Wang Y.-C, Li X.-Y, Li Y.-J, Pan Y.-M, Cheng K.-G, Wang H.-S. Chem. Res. Chin. Univ. 2014; 30: 614
    • 17h Xie Y.-Y, Wang Y.-C, Qu H.-E, Tan X.-C, Wang H.-S, Pan Y.-M. Adv. Synth. Catal. 2014; 356: 3347
    • 17i Li J.-L, Wang Y.-C, Li W.-Z, Wang H.-S, Mo D.-L, Pan Y.-M. Chem. Commun. 2015; 51: 17772
    • 17j Li J.-L, Li W.-Z, Wang Y.-C, Ren Q, Wang H.-S, Pan Y.-M. Chem. Commun. 2016; 52: 10028
    • 17k Xie Y.-Y, Wang Y.-C, He Y, Hu D.-C, Wang H.-S, Pan Y.-M. Green Chem. 2017; 19: 656
    • 17l Zhao H.-Y, Wang Y.-C, Cao X.-L, Pang Q.-F, Wang H.-S, Pan Y.-M. RSC Adv. 2017; 7: 24011
  • 18 Wallentin C.-J, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
  • 19 Beniazza R, Atkinson R, Absalon C, Castet F, Denisov SA, McClenaghan ND, Lastcoures D, Vincent J.-M. Adv. Synth. Catal. 2016; 358: 2949
    • 20a Lewis GW, Kasha M. J. Am. Chem. Soc. 1944; 66: 2100
    • 20b Lilie J, Beck G, Henglein A. Ber. Bunsen-Ges. 1971; 75: 458
    • 20c Lund T, Wayner DD. M, Jonsson M, Larsen AG, Daasbjerg K. J. Am. Chem. Soc. 2001; 123: 12590
  • 21 Yajima T, Ikegami M. Eur. J. Org. Chem. 2017; 2017: 2126
  • 22 Rawner T, Lutsker E, Kaiser CA, Reiser O. ACS Catal. 2018; 8: 3950
  • 23 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 24 Ji Y.-X, Wang L.-J, Guo W.-S, Bi Q, Zhang B. Adv. Synth. Catal. 2020; 362: 1131
  • 25 Zhang T.-X, Wang P.-F, Gao Z.-R, An Y, He C, Duan C.-Y. RSC Adv. 2018; 8: 32610
    • 26a Liu Y.-Y, Buru CT, Howarth AJ, Mahle JJ, Buchanan JH, DeCoste JB, Hupp JT, Farha OK. J. Mater. Chem. A 2016; 4: 13809
    • 26b Atilgan A, Islamoglu T, Howarth AJ, Hupp JT, Farha OK. ACS Appl. Mater. Interfaces 2017; 9: 24555
    • 26c Howarth AJ, Buru CT, Liu Y, Ploskonka AM, Hartlieb KJ, McEntee M, Mahle JJ, Buchanan JH, Durke EM, Al-Juaid SS, Stoddart JF, DeCoste JB, Hupp JT, Farha OK. Chem. Eur. J. 2017; 23: 214
    • 26d Park C, Seo G, Gupta JK, Lee CY. ACS Appl. Mater. Interfaces 2017; 9: 38670
    • 26e DeRosa MC, Crutchley RJ. Coord. Chem. Rev. 2002; 351: 233
    • 26f He Y, Wang Y, Liang X, Huang B, Wang H, Pan Y.-M. Org. Lett. 2018; 20: 7117
    • 26g Xi Z.-W, He Y, Liu L.-Q, Wang Y.-C. Org. Biomol. Chem. 2020; 18: 8089
  • 27 Wang Y, Wang J, Li G.-X, He G, Chen G. Org. Lett. 2017; 19: 1442
  • 28 Sun X.-Y, He Y.-Y, Yu S.-Y. J. Photochem. Photobiol., A 2018; 355: 326
  • 29 Helmecke L, Spittler M, Baumgarten K, Czekelius C. Org. Lett. 2019; 21: 7823
  • 30 Bracker M, Helmecke L, Kleinschmidt M, Czekelius C, Marian CM. Molecules 2020; 25: 1606
  • 31 Zhao L, Huang Y, Wang Z, Zhu E.-L, Mao T, Jia J, Gu J.-W, Li X.-F, He C.-Y. Org. Lett. 2019; 21: 6705
  • 32 Zhu E.-L, Liu X.-X, Wang A.-J, Mao T, Zhao L, Zhang X.-G, He C.-Y. Chem. Commun. 2019; 55: 12259
  • 33 Mao T, Ma M.-J, Zhao L, Xue D.-P, Yu Y.-B, Gu J.-W, He C.-Y. Chem. Commun. 2020; 56: 1815
    • 34a Nappi M, Bergonzini G, Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 4921
    • 34b Wozniak L, Murphy JJ, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 5678
  • 35 Wang S.-W, Yu J, Zhou Q.-Y, Chen S.-Y, Xu Z.-H, Tang S. ACS Sustainable Chem. Eng. 2019; 7: 10154
  • 36 Yajima T, Yamaguchi K, Hirokane R, Nogami E. J. Fluorine Chem. 2013; 150: 1
  • 37 Yajima T, Shigenaga S. Org. Lett. 2019; 21: 138
  • 38 Supranovich VI, Levin VV, Struchkova MI, Dilman AD. Org. Lett. 2018; 20: 840
    • 39a Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
    • 39b Xu P, Xie J, Xue Q, Pan C, Cheng Y, Cheng Z. Chem. Eur. J. 2013; 19: 14039
    • 39c Egami H, Shimizu R, Sodeoka M. J. Fluorine Chem. 2013; 152: 51
    • 39d Egami H, Shimizu R, Kawamura S, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 4000
    • 39e Li L, Deng M, Zheng S, Xiong Y, Tan B, Liu X. Org. Lett. 2014; 16: 504
    • 39f Mu X, Wu T, Wang H, Guo Y, Liu G. J. Am. Chem. Soc. 2012; 134: 878
    • 39g Li L, Guo J, Liu X, Chen S, Wang Y, Tan B, Liu X. Org. Lett. 2014; 16: 904
    • 39h Fu W, Fu Y, Xu C, Li S, Zou D. Eur. J. Org. Chem. 2014; 2014: 709
    • 39i Yang F, Klumphu P, Liang Y, Lipshutz BH. Chem. Commun. 2014; 50: 936
    • 39j Liu J, Zhuang S, Gui Q, Chen X, Yang Z, Tan Z. Eur. J. Org. Chem. 2014; 2014: 3196
    • 39k Zhang L, Li Z, Liu Z. Org. Lett. 2014; 16: 3688
    • 39l Wei W, Wen J, Yang D, Liu X, Guo M, Dong R, Wang H. J. Org. Chem. 2014; 79: 4225
    • 39m Shi L, Yang X, Wang Y, Yang H, Fu H. Adv. Synth. Catal. 2014; 356: 1021
  • 40 Tang S, Deng Y.-L, Li J, Wang W.-X, Ding G.-L, Wang M.-W, Xiao Z.-P, Wang Y.-C, Sheng R.-L. J. Org. Chem. 2015; 80: 12599
    • 41a Deng Y.-L, Tang S, Ding G.-L, Wang M.-W, Li J, Li Z.-Z, Yuan L, Sheng R.-L. Org. Biomol. Chem. 2016; 14: 9348
    • 41b Tang S, Zhou D, Li Z.-H, Fu M.-J, Li J, Sheng R.-L, Li S.-H. Synthesis 2015; 47: 1567
    • 41c Tang S, Li S.-H, Li Z.-H, Zhou D, Sheng R.-L. Tetrahedron Lett. 2015; 56: 1423
    • 41d Tang S, Zhou D, Deng Y.-L, Li Z.-H, Yang Y, He J.-G, Wang Y.-C. Sci. China Chem. 2015; 58: 684
    • 42a Tang S, Yuan L, Deng Y.-L, Li Z.-Z, Wang L.-N, Huang G.-X, Sheng R.-L. Tetrahedron Lett. 2017; 58: 329
    • 42b Tang S, Zhou D, Wang Y.-C. Eur. J. Org. Chem. 2014; 2014: 3656
    • 42c Yan W, Huang H. Chin. J. Org. Chem. 2021; 41: 4097
    • 44a Allart-Simon I, Gérard S, Sapi J. Molecules 2016; 21: 878
    • 44b Chen Z.-M, Zhang X.-M, Tu Y.-Q. Chem. Soc. Rev. 2015; 44: 5220
    • 44c Tang S, Xu Z.-H, Liu T, Wang S.-W, Yu J, Liu J, Hong Y, Chen S.-L, He J, Li J.-H. Angew. Chem. Int. Ed. 2021; 60: 21360
    • 45a Tang S, Yuan L, Li Z.-Z, Peng Z.-Y, Deng Y.-L, Wang L.-N, Huang G.-X, Sheng R.-L. Tetrahedron Lett. 2017; 58: 2127
    • 45b Tang S, Li S.-H, Zhou D, Zeng H.-Q, Wang N.-X. Sci. China Chem. 2013; 56: 1293
    • 45c Tang S, Li S.-H, Nakao Y, Hiyama T. Asian J. Org. Chem. 2013; 2: 416
    • 45d Tang S, Zhou D, Li S.-H, Wang N.-X. Chem. Res. Chin. Univ. 2013; 29: 678
  • 46 Li Z.-X, Wang M.-Y, Shi Z.-Z. Angew. Chem. Int. Ed. 2021; 60: 186
    • 47a Geng X, Lin F, Wang X, Jiao N. J. Photochem. Photobiol., A 2018; 355: 194
    • 47b Li L, Huang M, Liu C, Xiao J.-C, Chen Q.-Y, Guo Y, Zhao Z.-G. Org. Lett. 2015; 17: 4714
  • 48 Chen T, Guo Y, Sun K, Wu L.-Z, Liu W.-Q, Liu C, Huang Y, Chen Q.-Y. Org. Chem. Front. 2018; 5: 1045
  • 49 Guo Q, Wang M, Wang Y, Xu Z, Wang R. Chem. Commun. 2017; 53: 12317
  • 50 Guo Q, Wang M, Peng Q, Huo Y, Liu Q, Wang R, Xu Z. ACS Catal. 2019; 9: 4470
  • 51 Geng X.-Y, Lin F, Wang X, Jiao N. Org. Lett. 2017; 19: 4738
  • 52 Liu H, Guo Q, Chen C, Wang M, Xu Z. Org. Chem. Front. 2018; 5: 1522
  • 54 Sun X, Wang W, Li Y, Ma J, Yu S. Org. Lett. 2016; 18: 4638
  • 55 Yu J.-M, Cai C. Eur. J. Org. Chem. 2017; 2017: 6008
  • 56 Meyer D, Vin E, Wyler B, Lapointe G, Renaud P. Synlett 2016; 27: 745
  • 57 Tiwari DP, Dabral S, Wen J, Wiesenthal J, Terhorst S, Bolm C. Org. Lett. 2017; 19: 4295
  • 58 Xu W.-W, Wang L, Mao T, Gu J, Li X.-F, He C.-Y. Molecules 2020; 25: 508
  • 59 Lu H, Wang D.-Y, Zhang A. J. Org. Chem. 2020; 85: 942
  • 60 Huang Y, Lei Y.-Y, Zhao L, Gu J, Yao Q, Wang Z, Li X.-F, Zhang X, He C.-H. Chem. Commun. 2018; 54: 13662
  • 61 Liu J, Ding W, Zhou Q.-Q, Liu D, Lu L.-Q, Xiao W.-J. Org. Lett. 2018; 20: 461
  • 62 Yang C, Zhang W, Li Y.-H, Xue X.-S, Li X, Cheng J.-P. J. Org. Chem. 2017; 82: 9321
  • 63 Barata-Vallejo S, Yerien DE, Postigo A. Eur. J. Org. Chem. 2015; 2015: 7869
  • 64 He C.-Y, Gu J.-W, Zhang X. Tetrahedron Lett. 2017; 58: 3939
  • 65 Filippini G, Nappi M, Melchiorre P. Tetrahedron 2015; 71: 4535
  • 66 Guo Q, Wang M, Liu H, Wang R, Xu Z. Angew. Chem. Int. Ed. 2018; 57: 4747
  • 67 Yuan L, Li Z.-Z, Jiang S.-M, Zhu Y, Xia L.-L, Li L, Zhao C.-Q, Jiang T, Lei Q, Tang S. Chem. J. Chin. Univ. 2018; 39: 241
  • 68 Xie J, Zhang T, Chen F, Mehrkens N, Rominger F, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 2934
  • 69 Ji H, Ni H.-Q, Zhi P, Xi Z.-W, Wang W, Shi J.-J, Shen Y.-M. Org. Biomol. Chem. 2017; 15: 6014
  • 70 Xiao Y, Chun Y.-K, Cheng S.-C, Liu R, Tsea M.-K, Ko C.-C. Org. Biomol. Chem. 2020; 18: 8686
  • 71 Sugihara N, Suzuki K, Nishimoto Y, Yasuda M. J. Am. Chem. Soc. 2021; 143: 9308
    • 72a Chen K, Berg N, Gschwind R, Konig B. J. Am. Chem. Soc. 2017; 139: 18444
    • 72b Wang H.-B, Jui NT. J. Am. Chem. Soc. 2018; 140: 163
    • 73a Chu X.-Q, Xie T, Li L, Ge D.-H, Shen Z.-L, Loh T.-P. Org. Lett. 2018; 20: 2749
    • 73b Chu X.-Q, Cheng B.-Q, Zhang Y.-W, Ge D.-H, Shen Z.-L, Loh T.-P. Chem. Commun. 2018; 54: 2615
    • 73c Wu L.-H, Cheng J.-K, Shen L, Shen Z.-L, Loh T.-P. Synth. Catal. 2018; 360: 3894
    • 73d Wei W, Liu Q, Li Z.-Z, Shi W.-K, Fu X, Liu J, Zhu X, Wang X.-C, Xu N, Li T.-F, Jiang F.-R, Xiao Z.-P, Zhu H.-L. Eur. J. Med. Chem. 2017; 133: 62
  • 74 Wang R, Wang L, Xu Q, Ren B, Liang F. Org. Lett. 2019; 21: 3072

    • EDA complexes have recently found exciting applications in organic synthesis. For selected examples, see ref. 34a and:
    • 75a Arceo E, Jurberg ID, Alvarez-Fernandez A, Melchiorre P. Nat. Chem. 2013; 5: 750
    • 75b Silvi M, Arceo E, Jurberg ID, Cassani C, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 6120
    • 75c Kandukuri SR, Bahamonde A, Chatterjee I, Jurberg ID, Escudero-Adan EC, Melchiorre P. Angew. Chem. Int. Ed. 2015; 54: 1485
    • 75d Quint V, Morlet-Savary F, Lohier J.-F, Lalevee J, Gaumont AC, Lakhdar S. J. Am. Chem. Soc. 2016; 138: 7436
    • 75e Spell ML, Deveaux K, Bresnahan CG, Bernard BL, Sheffield W, Kumar R, Ragains JR. Angew. Chem. Int. Ed. 2016; 55: 6515

    • For C–S coupling, see:
    • 75f Liu B, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2017; 139: 13616
    • 75g Lima CG. S, de M Lima T, Duarte M, Jurberg ID, Paixao MW. ACS Catal. 2016; 6: 1389
    • 75h Postigo A. Eur. J. Org. Chem. 2018; 2018: 6389
  • 76 Wulkesch C, Czekelius C. J. Org. Chem. 2021; 86: 7425
    • 77a Brzozowski M, O’Brien M, Ley SV, Polyzos A. Acc. Chem. Res. 2015; 48: 349
    • 77b Mallia J, Baxendale IR. Org. Process Res. Dev. 2016; 20: 327
    • 77c Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
    • 77d Hone CA, Kappe CO. Top. Curr. Chem. 2019; 377: 2
    • 77e Fu W.-C, MacQueen PM, Jamison TF. Chem. Soc. Rev. 2021; 50: 7378
  • 78 Straathof NJ. W, Tegelbeckers BJ. P, Hessel V, Wang X, Noël T. Chem. Sci. 2014; 5: 4768
  • 79 Bottecchia C, Wei X.-J, Kuijpers KP. L, Hessel V, Nöel T. J. Org. Chem. 2016; 81: 7301
  • 80 Straathof NJ. W, Cramer SE, Hessel V, Noël T. Angew. Chem. Int. Ed. 2016; 55: 15549
    • 81a Li W.-Y, Ni W.-W, Ye Y.-X, Fang H.-L, Pan X.-M, He J.-L, Zhou T.-L, Yi J, Liu S.-S, Zhou M, Xiao Z.-P, Zhu H.-L. J. Enzyme Inhib. Med. Chem. 2020; 35: 404
    • 81b Liu Q, Ni W.-W, Li Z, Luo C.-F, Bai D.-D, Tan C.-J, Pu D, Zhou Q.-P, Tian N, Tan K.-L, Dai L, Yan Y, Pei Y, Li X.-H, Xiao Z.-P, Zhu H.-L. Eur. J. Pharm. Sci. 2018; 121: 293
    • 81c Liu Q, Shi W.-K, Ren S.-Z, Ni W.-W, Li W.-Y, Chen H.-M, Liu P, Yuan J, He X.-S, Liu J.-J, Cao P, Yang P.-Z, Xiao Z.-P, Zhu H.-L. Eur. J. Med. Chem. 2018; 156: 126
    • 82a Shi W.-K, Deng R.-C, Wang P.-F, Yue Q.-Q, Liu Q, Ding K.-L, Yang M.-H, Zhang H.-Y, Gong S.-H, Deng M, Liu W.-R, Feng Q.-J, Xiao Z.-P, Zhu H.-L. Bioorg. Med. Chem. 2016; 24: 4519
    • 82b Wei W, Shi W.-K, Wang P.-F, Zeng X.-T, Li P, Zhang J.-R, Li Q, Tang Z.-P, Peng J, Wu L.-Z, Xie M.-Q, Liu C, Li X.-H, Wang Y.-C, Xiao Z.-P, Zhu H.-L. Bioorg. Med. Chem. 2015; 23: 6602
    • 82c Xiao Z.-P, Wei W, Wang P.-F, Shi W.-K, Zhu N, Xie M.-Q, Sun Y.-W, Li L.-X, Xie Y.-X, Zhu L.-S, Tang N, Ouyang H, Li X.-H, Wang G.-C, Zhu H.-L. Eur. J. Med. Chem. 2015; 102: 631