Synthesis 2022; 54(18): 3928-3940
DOI: 10.1055/s-0041-1737493
short review

Recent Advances in Thianthrenation/Phenoxathiination Enabled Site-Selective Functionalization of Arenes

Xiao-Yue Chen
a   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P. R. of China
,
Yichen Wu
a   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P. R. of China
,
Peng Wang
a   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P. R. of China
b   CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P. R. of China
c   School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. of China
› Author Affiliations
We gratefully acknowledge National Natural Science Foundation of China (22101291, 22171277, 21821002), Shanghai Rising-Star Program (20QA1411400), Shanghai Institute of Organic Chemistry, and State Key Laboratory of Organometallic Chemistry for financial support.


Abstract

Site-selective functionalization of simple arenes remains a paramount challenge due to the similarity of multiple C–H bonds in the same molecule with similar steric environment and electronic properties. Recently, the site-selective thianthrenation/phenoxathiination of arenes has become an attractive solution to reach this challenging goal and it has been applied in the late-stage functionalization of various bioactive molecules. This short review aims to summarize recent advances in the site-selective C–H functionalization of arenes via aryl thianthrenium salts, as well as mechanistic insights in the remarkable site-selectivity obtained in thianthrenation step.

1 Introduction

2 Site-Selective Thianthrenation of Arenes and Mechanistic Insight

3 Thianthrenation-Enabled Site-Selective Functionalization of Arenes

3.1 Thianthrenation-Enabled C(sp 2)–C Bond Formation Reaction

3.2 Thianthrenation-Enabled C(sp 2)–X Bond Formation Reaction

4 Conclusion and Outlook



Publication History

Received: 08 April 2022

Accepted after revision: 02 May 2022

Article published online:
28 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews on non-directed C–H activation:
    • 1a Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 1b Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
    • 1c Wedi P, van Gemmeren M. Angew. Chem. Int. Ed. 2018; 57: 13016
    • 1d Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
    • 2a Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 2b Campeau L.-C, Stuart DR, Fagnou K. Aldrichimica Acta 2007; 40: 35
    • 2c Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 2d Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 2e McGlacken GP, Bateman LM. Chem. Soc. Rev. 2009; 38: 2447
    • 2f Sun C.-L, Li B.-J, Shi Z.-J. Chem. Commun. 2010; 46: 677
    • 2g Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 2h Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
    • 2i Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 2j Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 2k Hussain I, Singh T. Adv. Synth. Catal. 2014; 356: 1661
    • 2l Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 2m Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787

      For selected reviews on late-stage functionalization:
    • 3a Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 3b Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
    • 3c Pouliot J.-R, Grenier F, Blaskovits JT, Beaupré S, Leclerc M. Chem. Rev. 2016; 116: 14225
    • 3d Shugrue CR, Miller SJ. Chem. Rev. 2017; 117: 11894
    • 3e Börgel J, Ritter T. Chem 2020; 6: 1877
    • 3f Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 43
    • 3g Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ. Nat. Rev. Chem. 2021; 5: 522
    • 4a Taylor R. Electrophilic Aromatic Substitution . Wiley; New York: 1990
    • 4b de la Mare PB. In Electrophilic Halogenation, Chapt. 5. Elmore DT, Leadbetter A, Schofield K. Cambridge University Press; Cambridge: 1976
    • 4c Olah GA. Acc. Chem. Res. 1971; 4: 240

      For selected reviews on directing group approaches for meta- and para-functionalization, see:
    • 5a Yang J. Org. Biomol. Chem. 2015; 13: 1930
    • 5b Li J, De Sarkar S, Ackermann L. Top. Organomet. Chem. 2016; 55: 217
    • 5c Dey A, Sinha SK, Achar TK, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10820
    • 5d Haldar C, Hoque ME, Bisht R, Chattopadhyay B. Tetrahedron Lett. 2018; 59: 1269
    • 6a Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 6b Kuninobu Y, Torigoe T. Org. Biomol. Chem. 2020; 18: 4126
    • 6c Haldar C, Hoque ME, Chaturvedi J, Hassan MM. M, Chattopadhyay B. Chem. Commun. 2021; 57: 13059
    • 6d Cheng C, Hartwig JF. Science 2014; 343: 853
    • 6e Saito Y, Segawa Y, Itami K. J. Am. Chem. Soc. 2015; 137: 5193
    • 6f Haines BE, Saito Y, Segawa Y, Itami K, Musaev DG. ACS Catal. 2016; 6: 7536
    • 6g Okumura S, Tang S, Saito T, Semba K, Sakaki S, Nakao Y. J. Am. Chem. Soc. 2016; 138: 14699
    • 7a Li H, Sun C.-L, Yu M, Yu D.-G, Li B.-J, Shi Z.-J. Chem. Eur. J. 2011; 17: 3593
    • 7b Guo X, Li C.-J. Org. Lett. 2011; 13: 4977
    • 7c Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
    • 7d Boursalian GB, Ham WS, Mazzotti AR, Ritter T. Nat. Chem. 2016; 8: 810
    • 7e Niu L, Yi H, Wang S, Liu T, Liu J, Lei A. Nat. Commun. 2017; 8: 14226
    • 7f Yuan C, Zhu L, Zeng R, Lan Y, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 1277
    • 7g Thakur A, Manisha, Kumar I, Sharma U. Asian J. Org. Chem. 2022; e202100804

      For selected reviews on sulfonium salts:
    • 8a Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
    • 8b Kozhushkov SI, Alcarazo M. Eur. J. Inorg. Chem. 2020; 2486
    • 8c Peter A, Perry GJ. P, Procter DJ. Adv. Synth. Catal. 2020; 362: 2135
    • 8d Tian Z.-Y, Hu Y.-T, Teng H.-B, Zhang C.-P. Tetrahedron Lett. 2018; 59: 299
    • 8e Nenaidenko VG, Balenkova ES. Russ. J. Org. Chem. 2003; 39: 291

      For selected examples on other sulfonium salts mediated C–H functionalization:
    • 9a Donck S, Baroudi A, Fensterbank L, Goddard J.-P, Ollivier C. Adv. Synth. Catal. 2013; 355: 1477
    • 9b Minami H, Otsuka S, Nogi K, Yorimitsu H. ACS Catal. 2018; 8: 579
    • 9c Aukland MH, Talbot FJ. T, Fernández-Salas JA, Ball M, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2018; 57: 9785
    • 9d Xu P, Zhao D, Berger F, Hamad A, Rickmeier J, Petzold R, Kondratiuk M, Bohdan K, Ritter T. Angew. Chem. Int. Ed. 2020; 59: 1956
    • 9e Kafuta K, Korzun A, Böhm M, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2020; 59: 1950
    • 9f Aukland MH, Šiaučiulis M, West A, Perry GJ. P, Procter DJ. Nat. Catal. 2020; 3: 163
    • 9g Tian Z.-Y, Zhang C.-P. Org. Chem. Front. 2022; 9: 2220
  • 10 Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
    • 11a Wu J, Wang Z, Chen X.-Y, Wu Y, Wang D, Peng Q, Wang P. Sci. China Chem. 2020; 63: 336
    • 11b Also see our preprint version on Chemrxiv: Wu J, Wang Z, Chen X.-Y, Wu Y, Wang D, Peng Q, Wang P. ChemRxiv 2019; preprint DOI: 10.26434/chemrxiv.8148725.v1.
  • 12 Lucken EA. C. J. Chem. Soc. 1962; 4963
  • 13 Shine HJ, Silber JJ. J. Org. Chem. 1971; 36: 2923
  • 14 Kim K, Hull VJ, Shine HJ. J. Org. Chem. 1974; 39: 2534
  • 15 Svanholm U, Hammerich O, Parker VD. J. Am. Chem. Soc. 1975; 97: 101
  • 16 Svanholm U, Parker VD. J. Am. Chem. Soc. 1976; 98: 997
  • 17 Tinker LA, Bard AJ. J. Electroanal. Chem. 1982; 133: 275
  • 18 Chen J, Li J, Plutschack MB, Berger F, Ritter T. Angew. Chem. Int. Ed. 2020; 59: 5616
  • 19 Juliá F, Shao Q, Duan M, Plutschack MB, Berger F, Mateos J, Lu C, Xue X.-S, Houk KN, Ritter T. J. Am. Chem. Soc. 2021; 143: 16041
  • 20 Chen X.-Y, Nie X.-X, Wu Y, Wang P. Chem. Commun. 2020; 56: 5058
  • 21 Tian Z.-Y, Lin Z.-H, Zhang C.-P. Org. Lett. 2021; 23: 4400
  • 22 Alvarez EM, Karl T, Berger F, Torkowski L, Ritter T. Angew. Chem. Int. Ed. 2021; 60: 13609
  • 23 Zhao Y, Yu C, Liang W, Patureau FW. Org. Lett. 2021; 23: 6232
  • 24 Liang L, Niu H.-Y, Li R.-L, Wang Y.-F, Yan J.-K, Li C.-G, Guo H.-M. Org. Lett. 2020; 22: 6842
  • 25 Lansbergen B, Granatino P, Ritter T. J. Am. Chem. Soc. 2021; 143: 7909
  • 26 Nie X.-X, Huang Y.-H, Wang P. Org. Lett. 2020; 22: 7716
  • 27 Zhang Y.-L, Wang G.-H, Wu Y, Zhu C.-Y, Wang P. Org. Lett. 2021; 23: 8522
  • 28 Ye F, Berger F, Jia H, Ford J, Wortman A, Börgel J, Genicot C, Ritter T. Angew. Chem. Int. Ed. 2019; 58: 14615
  • 29 Engl PS, Häring AP, Berger F, Berger G, Pérez-Bitrián A, Ritter T. J. Am. Chem. Soc. 2019; 141: 13346
  • 30 Berger F, Alvarez EM, Frank N, Bohdan K, Kondratiuk M, Torkowski L, Engl PS, Barletta J, Ritter T. Org. Lett. 2020; 22: 5671
  • 31 Sang R, Korkis SE, Su W, Ye F, Engl PS, Berger F, Ritter T. Angew. Chem. Int. Ed. 2019; 58: 16161
  • 32 Zhao Y, Yu C, Liang W, Atodiresei IL, Patureau FW. Chem. Commun. 2022; 58: 284
  • 33 Chen X.-Y, Huang Y.-H, Zhou J, Wang P. Chin. J. Chem. 2020; 38: 1269
  • 34 Wu Y, Huang Y.-H, Chen X.-Y, Wang P. Org. Lett. 2020; 22: 6657
  • 35 Selmani A, Gevondian AG, Schoenebeck F. Org. Lett. 2020; 22: 4802
  • 36 Li J, Chen J, Sang R, Ham W.-S, Plutschack MB, Berger F, Chabbra S, Schnegg A, Genicot C, Ritter T. Nat. Chem. 2020; 12: 56
  • 37 Alvarez EM, Plutschack MB, Berger F, Ritter T. Org. Lett. 2020; 22: 4593
  • 38 Cabrera-Afonso MJ, Granados A, Molander GA. Angew. Chem. Int. Ed. 2022; 61: e202202706
  • 39 Ye Y, Zhu J, Huang Y. Org. Lett. 2021; 23: 2386
  • 40 Zhao D, Petzold R, Yan J, Muri D, Ritter T. Nature 2021; 600: 444