Synthesis 2023; 55(07): 1007-1041
DOI: 10.1055/s-0042-1751418
review

Sugars in Multicomponent Reactions: A Toolbox for Diversity-Oriented Synthesis

Vipin K. Maikhuri
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
,
Vineet Verma
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
b   Department of Chemistry, Starex University, Gurugram, Haryana, India
,
Ankita Chaudhary
c   Maitreyi College, Department of Chemistry, University of Delhi, Delhi, India
,
Divya Mathur
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
d   Daulat Ram College, Department of Chemistry, University of Delhi, Delhi, India
,
Rajesh Kumar
e   Department of Chemistry, R.D.S. College, B.R.A. Bihar University, Muzaffarpur, India
,
Ashok K. Prasad
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
› Institutsangaben
We are grateful to the Institute of Eminence, University of Delhi for providing financial support under R&D program.


Abstract

Multicomponent reactions (MCRs) cover strategically employed chemical transformations that incorporate three or more reactants in one pot leading to a functionalized final product. Thus, it is an ideal tool to achieve high levels of complexity, diversity, yields of desired products, atom economy, and reduced reaction times. Sugars belong to the class of naturally occurring compounds with fascinating applications in the field of drug discovery due to the presence of various hydroxy groups and well-defined stereochemistry. However, their potential in MCRs has been realized only recently. This account describes recent advances in the synthesis of sugar-derived heterocycles synthesized by MCRs. We hope to encourage the synthetic and medicinal chemistry community to apply this powerful MCR chemistry to generate novel glycoconjugate challenges.

1 Introduction

2 Synthesis of Various Functionalized Sugar Compounds

2.1 Passerini and Ugi Multicomponent Reactions

2.2 Petasis Reaction

2.3 Hantzsch Reaction

2.4 Domino Ferrier–Povarov Reaction

2.5 Marckwald Reaction

2.6 Groebke–Blackburn–Bienaymé (GBB) Reaction

2.7 Prins–Ritter Reaction

2.8 Debus–Radziszewski Imidazole Synthesis Reaction

2.9 Mannich Reaction

2.10 A3-Coupling Reaction

2.11 [3+2]-Cycloaddition Reactions

2.12 Miscellaneous Reactions

3 Conclusion



Publikationsverlauf

Eingereicht: 22. November 2022

Angenommen nach Revision: 17. Januar 2023

Artikel online veröffentlicht:
02. März 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Reguera L, Rivera DG. Chem. Rev. 2019; 119: 9836
    • 1b Longo LS, Siqueira FA, Anjos NS, Santos GF. D. ChemistrySelect 2021; 6: 5097
    • 1c Bakulina O, Inyutina A, Dar’in D, Krasavin M. Molecules 2021; 26: 6563
    • 1d Rodriguez PN, Ghashghaei O, Bagan A, Escolano C, Lavilla R. Biomedicine 2022; 10: 1488
    • 1e Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
    • 1f Multicomponent Reactions: Concepts and Applications for Design and Synthesis. Herrera RP, Marqués-López E. John Wiley & Sons; Hoboken: 2015
  • 2 Posner GH. Chem. Rev. 1986; 86: 831
    • 3a Zarganes-Tzitzikas T, Chandgude AL, Dömling A. Chem. Rec. 2015; 15: 981
    • 3b Brandao P, Marques C, Burke AJ, Pineiro M. Eur. J. Med. Chem. 2021; 211: 113102
  • 4 Ugi I. Pure Appl. Chem. 2001; 73: 187
    • 5a Domling A, Wang W, Wang K. Chem. Rev. 2011; 112: 3083
    • 5b Zhi S, Ma X, Zhang W. Org. Biomol. Chem. 2019; 17: 7632
    • 5c Olyaei A, Abediha S, Sadeghpour M, Adl A. ChemistrySelect 2022; 7: e202201650
    • 5d Bosica G, Demanuele K, Padrón JM, Puerta A. Beilstein J. Org. Chem. 2020; 16: 2862
    • 5e Giustiniano M, Moni L, Sangaletti L, Pelliccia S, Basso A, Novellino E, Tron GC. Synthesis 2018; 50: 3549
    • 6a Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
    • 6b Domino Reactions: Concepts for Efficient Organic Synthesis. Tietze LF. Wiley-VCH; Weinheim: 2014
  • 7 Müller TJ. J, D’Souza D. Pure Appl. Chem. 2008; 80: 609
    • 9a Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Chem. Rev. 2018; 118: 8188
    • 9b Su L, Feng Y, Wei K, Xu X, Liu R, Chen G. Chem. Rev. 2021; 121: 10950
  • 10 Jiang H, Qin X, Wang Q, Xu Q, Wang J, Wu Y, Chen W, Wang C, Zhang T, Xing D, Zhang R. Eur. J. Med. Chem. 2021; 223: 113633
  • 12 Chan-Tack KM, Kim C, Moruf A, Birnkrant DB. Antiviral Ther. 2015; 20: 561
  • 13 Chen C, Lu L, Yan S, Yi H, Yao H, Wu D, He G, Tao X, Deng X. Anticancer Drugs 2018; 29: 1
  • 14 Saeed MA, Narendran P. Drug Des., Dev. Ther. 2014; 8: 2493
  • 15 Yilmaz C, Ozcengiz G. Biochem. Pharmacol. 2017; 133: 43
  • 16 Aoki T, Kokudo N, Komoto I, Takaori K, Kimura W, Sano K, Takamoto T, Hashimoto T, Okusaka T, Morizane C, Ito T, Imamura M. J. Gastroenterol. 2015; 50: 769
  • 17 Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, Hall MD. ACS Cent. Sci. 2020; 6: 672
    • 18a Lockhoff O. Angew. Chem. Int. Ed. 1998; 37: 3436
    • 18b Khan MM, Yousuf R, Khan S. Shafiullah, RSC Adv. 2015; 5: 57883
    • 19a Wahby Y, Abdel-Hamid H, Ayoup MS. New J. Chem. 2022; 46: 1445
    • 19b Passerini M. Gazz. Chim. Ital. 1921; 51: 126
    • 20a Mohammadkhani L, Heravi MM. ChemistrySelect 2019; 4: 10187
    • 20b Tripolitsiotis NP, Thomaidi M, Neochoritis CG. Eur. J. Org. Chem. 2020; 2020: 6525
  • 21 Ramozzi R, Morokuma K. J. Org. Chem. 2015; 80: 5652
    • 22a Tsai CY, Park WK, Weitz-Schmidt G, Ernst B, Wong CH. Bioorg. Med. Chem. Lett. 1998; 8: 2333
    • 22b Sutherlin DP, Stark TM, Hughes R, Armstrong RW. J. Org. Chem. 1996; 61: 8350
  • 23 Westermann B, Dörner S. Chem. Commun. 2005; 2116
  • 24 Vlahovicek-Kahlina K, Vazdar M, Jakas A, Smrecki V, Jeric I. J. Org. Chem. 2018; 83: 13146
  • 25 Vlahovicek-Kahlina K, Sajko JS, Jeric I. Int. J. Mol. Sci. 2019; 20: 6236
  • 26 Esen E, Meier MA. R. ACS Sustainable Chem. Eng. 2020; 8: 15755
  • 27 Dinh TQ, Smith CD, Du X, Armstrong RW. J. Med. Chem. 1998; 41: 981
  • 28 Kumar B, Maity J, Shankar B, Kumar S, Kavita, Prasad AK. Carbohydr. Res. 2021; 500: 108236
  • 29 Azad CS, Saxena AK. Org. Chem. Front. 2015; 2: 665
  • 30 Wang H, Shen Y, Zhao L, Ye Y. Curr. Med. Chem. 2021; 28: 628
  • 31 Fleet GW. J, Estevez JC, Smith MD, Blériot Y, la Fuente C, Krülle TM, Besra GS, Brennan PJ, Nash RJ, Johnson LN, Oikonomakos NG. Pure Appl. Chem. 1998; 70: 279
  • 32 Voigt B, Linke M, Mahrwald R. Org. Lett. 2015; 17: 2606
  • 33 Zhao P.-F, Liu Z.-Q. Eur. J. Med. Chem. 2017; 135: 458
  • 34 Vlahovicek-Kahlina K, Stefanic Z, Vazdar K, Jeric I. ChemPlusChem 2020; 85: 838
  • 35 Jakas A, Visnjevac A, Jeric I. J. Org. Chem. 2020; 85: 3766
  • 36 Jakas A, Ayyalasomayajula R, Cudic M, Jerić I. Glycoconjugate J. 2022; 39: 587
  • 37 Wieclaw MM, Furman B. Beilstein J. Org. Chem. 2021; 17: 115
  • 38 Kumar H, Prajapati G, Dubey A, Ampapathi RS, Mandal PK. Org. Lett. 2020; 22: 9258
  • 39 Mendez Y, Chang J, Humpierre AR, Zanuy A, Garrido R, Vasco AV, Pedroso J, Santana D, Rodriguez LM, Garcia-Rivera D, Valdes Y, Verez-Bencomo V, Rivera DG. Chem. Sci. 2018; 9: 2581
  • 40 Wu P, Givskov M, Nielsen TE. Chem. Rev. 2019; 119: 11245
  • 41 Tao C.-Z, Zhang Z.-T, Wu J.-W, Li R.-H, Cao Z.-L. Chin. Chem. Lett. 2014; 25: 532
  • 42 Lenci E, Puglielli RB, Bucaletti E, Innocenti R, Trabocchi A. Eur. J. Org. Chem. 2020; 2020: 4227
  • 43 Dondoni A, Massi A. Mol Diversity 2003; 6: 261
  • 44 Dondoni A, Massi A, Minghini E. Synlett 2002; 0089
  • 45 Verma C, Quraishi MA, Kluza K, Makowska-Janusik M, Olasunkanmi LO, Ebenso EE. Sci. Rep. 2017; 7: 44432
  • 46 Nourisefat M, Panahi F, Khalafi-Nezhad A. Mol. Diversity 2019; 23: 317
  • 47 Nikoofar K, Heidari H, Shahedi Y. Cellulose 2018; 25: 5697
  • 48 Gupta S, Khare NK. J. Mol. Struct. 2017; 1127: 309
  • 49 Verma C, Olasunkanmi LO, Ebenso EE, Obot IB, Quraishi MA. J. Phys. Chem. C 2016; 120: 11598
  • 50 Gomez AM, Lobo F, Uriel C, Lopez JC. Eur. J. Org. Chem. 2013; 2013: 7221
  • 51 Moshapo PT, Sokamisa M, Mmutlane EM, Mampa RM, Kinfe HH. Org. Biomol. Chem. 2016; 14: 5627
  • 52 Baumann M, Baxendale IR. Org. Lett. 2014; 16: 6076
  • 53 Kumar B, Shankar B, Kumar S, Maity J, Prasad AK. Synth. Commun. 2020; 50: 2853
  • 54 Chiba M, Ishikawa Y, Sakai R, Oikawa M. ACS Comb. Sci. 2016; 18: 399
  • 55 Petrusova M, Smrticova H, Pribulova B, Vlckova S, Uhliarikova I, Docsa T, Somsak L, Petrus L. Tetrahedron 2016; 72: 2116
  • 56 Allochio Filho JF, Lemos BC, de Souza AS, Pinheiro S, Greco SJ. Tetrahedron 2017; 73: 6977
  • 57 Rajasekar M, Das TM. RSC Adv. 2014; 4: 42538
  • 58 Thakur K, Khare NK. Carbohydr. Res. 2020; 494: 108053
  • 59 Mondal RR, Khamarui S, Maiti DK. ACS Omega 2016; 1: 251
  • 60 Mandal PK. RSC Adv. 2014; 4: 5803
  • 61 Xie J, Bogliotti N. Chem. Rev. 2014; 114: 7678
  • 62 Rao JN. S, Raghunathan R. Tetrahedron Lett. 2015; 56: 2669
  • 63 Bellucci MC, Volonterio A. Eur. J. Org. Chem. 2014; 2014: 2386
  • 64 Sganappa A, Bellucci MC, Nizet V, Tor Y, Volonterio A. Synthesis 2016; 48: 4443
  • 65 Senthilkumar S, Prasad SS, Das A, Baskaran S. Chem. Eur. J. 2015; 21: 15914
  • 66 Prasad SS, Senthilkumar S, Srivastava A, Baskaran S. Org. Lett. 2017; 19: 4403
  • 67 Prasad SS, Reddy NR, Baskaran S. J. Org. Chem. 2018; 83: 9604
  • 68 Benmahdjoub S, Ibrahim N, Benmerad B, Alami M, Messaoudi S. Org. Lett. 2018; 20: 4067
  • 69 Rao JN. S, Raghunathan R. Tetrahedron Lett. 2015; 56: 1539
  • 70 Xia M, Lambu MR, Tatina MB, Judeh ZM. A. J. Org. Chem. 2021; 86: 837
  • 71 Rai VK, Kosta RK. Can. J. Chem. 2016; 94: 827
  • 72 Dangolani SK, Panahi F, Tavaf Z, Nourisefat M, Yousefi R, Khalafi-Nezhad A. ACS Omega 2018; 3: 10341
  • 73 Bellucci MC, Sagnappa A, Saini M, Volonterio A. Tetrahedron 2015; 71: 7630
  • 74 Dharma Rao GB, Anjaneyulu B, Kaushik MP. Tetrahedron Lett. 2014; 55: 19
  • 75 Prasanna R, Puroshothaman S, Raghunathan R. Tetrahedron 2020; 76: 131398
  • 76 Rajput VK, Leffler H, Nilsson UJ, Mukhopadhyay B. Bioorg. Med. Chem. Lett. 2014; 24: 3516
  • 77 Du L.-H, Chen P.-F, Long R.-J, Xue M, Luo XP. RSC Adv. 2020; 10: 13252