Synlett
DOI: 10.1055/s-0042-1751520
account
Thieme Chemistry Journals Awardees 2023

Dearomatization of α-Unsubstituted β-Naphthols

Ying Li
,
Kongling Feng
,
Ruinan Zhao
,
Cuiju Zhu
,
Hao Xu
We are grateful for financial support from the National Natural Science Foundation of China (21801087), the Fundamental Research Funds for the Central Universities, and the Central China Normal University (CCNU19QN064).


Abstract

This Account summarizes the highly appealing dearomatization reactions of β-naphthols for the synthesis of highly functionalized, three-dimensional structures starting with simple planar aromatic compounds. The reactions are categorized mainly from the viewpoint of the construction of carbon–hydrogen, carbon–carbon, and carbon–hetero bonds (C–N/O, C–Cl, C–F) at the α-position of β-naphthols. The dearomatized products play an important role in organic synthesis and materials science.

1 Introduction

2 Construction of Carbon–Hydrogen Bonds at the α-Position of β-Naphthols

3 Construction of Carbon–Carbon Bonds at the α-Position of β-Naphthols

4 Construction of Carbon–Nitrogen/Oxygen Double Bond at the α-Position of β-Naphthols

5 Construction of Carbon–Carbon and Carbon–Oxygen Bonds at the α-Position of β-Naphthols

6 Construction of Carbon–Halogen Bonds at the α-Position of β-Naphthols

7 Conclusion



Publication History

Received: 15 September 2023

Accepted after revision: 05 October 2023

Article published online:
10 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Allen JR, Biswas K, Bryan MC, Burli R, Cao G.-Q, Frohn MJ, Golden JE, Mercede S, Neira S, Peterkin T, Pickrell AJ, Reed A, Tegley CM, Wang X. WO2008/076427A2, 2008
    • 1b Hutchinson DK, Bellettini JR, Betebenner DA, Bishop RD, Borchardt TB, Bosse TD, Cink RD, Flentge CA, Gates BD, Green BE, Hinman MM, Huang PP, Klein LL, Krueger AC, Larson DP, Leanna MR, Liu D, Madigan DL, McDaniel KF, Randolph JT, Rockway TW, Rosenberg TA, Stewart KD, Stoll VS, Wagner R, Yeung MC. US2005/0107364A1, 2005
    • 1c Kotha S, Ali R. Turk. J. Chem. 2015; 39: 1190
    • 1d Tang G.-H, Zhang Y, Yuan C.-M, Li Y, Gu Y.-C, Di Y.-T, Wang Y.-H, Zuo G.-Y, Li S.-F, Li S.-L, He H.-P, Hao X.-J. J. Nat. Prod. 2012; 75: 1962
    • 1e Hwang G, Jones G, Goldberg I. Biochemistry 2004; 43: 641
  • 2 Katsuki T, Oguma T. Chem. Commun. 2014; 50: 5053
  • 3 Abazid AH, Nachtsheim BJ. Chem. Commun. 2021; 57: 8822
  • 4 Zhang N.-C, Ye Y.-Z, Bai L, Liu J.-J, Wang H, Luan X.-J. Chin. Chem. Lett. 2022; 33: 2411
  • 5 Wang L.-Q, Zhu H.-Y, Peng T.-Y, Xu Y.-F, Hou Y.-Z, Li S.-X, Pang S.-M, Zhang H.-L, Yang D.-X. Chin. Chem. Lett. 2022; 33: 4273
  • 6 Qi M, Li M.-Y, Bai L, Liu J.-J, Luan X.-J. J. Org. Chem. 2023; 88: 5997
  • 7 Wei W, Scheremetjew A, Ackermann L. Chem. Sci. 2022; 13: 2783
  • 8 Stork G, Foreman EL. J. Am. Chem. Soc. 1946; 68: 2172
  • 9 Kakiuchi K, Yamaguchi B, Kinugawa M, Ue M, Tobe Y, Odaira Y. J. Org. Chem. 1993; 58: 2797
  • 10 Kulish K, Boldrini C, Castineira Reis M, Perez JM, Harutyunyan SR. Chem. Eur. J. 2020; 26: 15843
  • 11 Gu S.-L, Luo L, Liu J.-J, Bai L, Zheng H.-Y, Wang Y.-Y, Luan X.-J. Org. Lett. 2014; 16: 6132
  • 12 Han T, Yao Z.-S, Qiu Z.-J, Zhao Z, Wu K.-Y, Wang J.-G, Poon AW, Lam JW. Y, Tang B.-Z. Nat. Commun. 2019; 10: 5483
  • 13 Liang W.-B, Yang Y.-D, Yang M.-F, Zhang M, Li C.-M, Ran Y, Lan J.-B, Bin Z.-Y, You J.-S. Angew. Chem. Int. Ed. 2021; 60: 3493
  • 14 Wu J.-Y, Bai L, Han L.-B, Liu J.-J, Luan X.-J. Chem. Commun. 2021; 57: 1117
  • 15 Li Y.-F, Tang Z.-Q, Zhang J.-L, Liu L. Chem. Commun. 2020; 56: 8202
    • 16a Nakazaki M, Naemura K, Yoshihara H. Bull. Chem. Soc. Jpn. 1975; 48: 3278
    • 16b Hagiwara K, Iwatsu M, Urabe D, Inoue M. Heterocycles 2015; 90: 659
    • 16c Kremlev MM, Mushta OI, Yagupolskii YL, Rusanova JA, Peng S, Petrov V. J. Fluorine Chem. 2020; 232: 109450
  • 17 Chow YL, Wu Z.-Z. J. Am. Chem. Soc. 1987; 109: 5260
  • 18 Kitamura M, Tashiro N, Sakata R, Okauchi T. Synlett 2010; 2503
  • 19 Mallik S, Bhajammanavar V, Mukherjee AP, Baidya M. Org. Lett. 2019; 21: 2352
  • 20 Mal D, Roy HN, Hazra NK, Adhikari S. Tetrahedron 1997; 53: 2177
  • 21 Luo H.-B, Xie Y.-Y. Chin. Chem. Lett. 2003; 14: 555
    • 22a Magdziak D, Rodriguez AA, Van De Water RW, Pettus TR. R. Org. Lett. 2002; 4: 285
    • 22b Wu A.-H, Duan Y.-Z, Xu D.-W, Penning TM, Harvey RG. Tetrahedron 2010; 66: 2111
  • 23 Tiruye HM, Jørgensen KB. Tetrahedron 2022; 129: 133144
  • 24 Pang T, Sun Y, Xue W.-J, Zhu Y.-P, Yu G.-A, Wu A.-X. Adv. Synth. Catal. 2013; 355: 2208
  • 25 Geng M.-Q, Kuang J.-Q, Miao M.-Z, Ma Y.-M. Org. Biomol. Chem. 2023; 21: 3101
  • 26 Patrick TB, Hayward EC. J. Org. Chem. 1974; 39: 2120
  • 27 Hesse RH. Isr. J. Chem. 1978; 17: 60
  • 28 Patrick TB, Cantrell GL, Chang C.-Y. J. Am. Chem. Soc. 1979; 101: 7434
  • 29 Stavber S, Zupan M. J. Chem. Soc., Chem. Commun. 1981; 148
  • 30 Patrick TB, Darling DL. J. Org. Chem. 1986; 51: 3242
  • 31 Stavber S, Zupan M. Synlett 1996; 693
  • 32 Stavber G, Zupan M, Jereb M, Stavber S. Org. Lett. 2004; 6: 4973
  • 33 Heravi MR. P. J. Fluorine Chem. 2008; 129: 217
    • 34a Zaikin PA, Dyan OT, Evtushok DV, Usoltsev AN, Borodkin GI, Karpova EV, Shubin VG. Eur. J. Org. Chem. 2017; 2469
    • 34b Zaikin PA, Dyan OT, Fadeev DS, Gatilov YV, Borodkin GI. J. Fluorine Chem. 2017; 199: 20
  • 35 Rogers DA, Hopkins MD, Rajagopal N, Varshney D, Howard HA, LeBlanc G, Lamar AA. ACS Omega 2020; 5: 7693