Subscribe to RSS

DOI: 10.1055/s-0043-1775405
Recent Progress in the Synthesis and Glycosylation of Rare Sugars
This work was supported by the Aarhus University Research Foundation (AUFF-E-2022-7-11) and the Novo Nordisk Foundation (NNF23OC0083957).

This Short Review is dedicated to Professor Erick M. Carreira on the occasion of his 60th birthday.
Abstract
Out of 42 naturally occurring monosaccharides, only seven are abundant in Nature (glucose, galactose, mannose, fructose, xylose, ribose, and l-arabinose), while the others have been classified as ‘rare sugars’. Fungi and bacteria use a wide range of monosaccharides, in contrast to mammals, reflected in their glycosylated metabolites, as well as the cellular machineries that are involved in their sugar metabolism. Recognition of the microbiome’s impact on human health has led to increased interest in microbial glycans, as they often mediate interaction between host and microbes. Efficient access to rare sugars and oligosaccharides is necessary to study their roles in Nature, which can provide new pharmacological leads. Furthermore, it enables the synthesis of bioactive glycosylated natural products and congeners. This short review highlights recent progress in the synthesis and the efficient, site- and stereoselective glycosylation of rare sugars. Finally, it provides a recent example where synthetic access to rare sugars has enabled biochemical studies to better understand and interfere with processes in Nature.
1 Introduction
2 Synthesis of Rare Sugars
2.1 Syntheses from Renewable Feedstock
2.2 De Novo Syntheses
3 Glycosylation
3.1 Catalyst-Controlled Glycosylation
3.2 One-Pot Iterative Oligosaccharide Synthesis in Solution
4 Application in Biochemical Research
5 Conclusion
Key words
carbohydrates - rare sugars - oligosaccharides - glycosylation - catalysis - photochemistryPublication History
Received: 16 April 2024
Accepted after revision: 02 September 2024
Article published online:
08 October 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Reily C, Stewart TJ, Renfrow MB, Novak J. Nat. Rev. Nephrol. 2019; 15: 346
- 2 Ohtsubo K, Marth JD. Cell 2006; 126: 855
- 3 Herget S, Toukach PV, Ranzinger R, Hull WE, Knirel YA, Von Der Lieth C.-W. BMC Struct. Biol. 2008; 8: 35
- 4 Toukach PV, Egorova KS. Comput. Struct. Biotechnol. J. 2022; 20: 5466
- 5 Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. Chem. Soc. Rev. 2015; 44: 7591
- 6 Palacios DS, Dailey I, Siebert DM, Wilcock BC, Burke MD. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 6733
- 7 Croatt MP, Carreira EM. Org. Lett. 2011; 13: 1390
- 8 Walker S, Murnick J, Kahne D. J. Am. Chem. Soc. 1993; 115: 7954
- 9 Drak J, Iwasawa N, Danishefsky S, Crothers DM. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 7464
- 10 Walker S, Valentine KG, Kahne D. J. Am. Chem. Soc. 1990; 112: 6428
- 11 Fu X, Albermann C, Jiang J, Liao J, Zhang C, Thorson JS. Nat. Biotechnol. 2003; 21: 1467
- 12 Gantt RW, Peltier-Pain P, Thorson JS. Nat. Prod. Rep. 2011; 28: 1811
- 13 Poole J, Day CJ, Von Itzstein M, Paton JC, Jennings MP. Nat. Rev. Microbiol. 2018; 16: 440
- 14 Aminov R, Aminova L. Glycobiology 2023; 33: 1106
- 15 Tan FY. Y, Tang CM, Exley RM. Trends Biochem. Sci. 2015; 40: 342
- 16 Beerens K, Desmet T, Soetaert W. J. Ind. Microbiol. Biotechnol. 2012; 39: 823
- 17 Zhang Y, Zhang J, Ponomareva LV, Cui Z, Van Lanen SG, Thorson JS. J. Am. Chem. Soc. 2020; 142: 9389
- 18 Rosenbrook WJ, Carney RE. J. Antibiot. (Tokyo) 1975; 28: 953
- 19 Chung K, Waymouth RM. ACS Catal. 2016; 6: 4653
- 20 Jäger M, Hartmann M, de Vries JG, Minnaard AJ. Angew. Chem. Int. Ed. 2013; 52: 7809
- 21 Conley NR, Labios LA, Pearson DM, McCrory CC. L, Waymouth RM. Organometallics 2007; 26: 5447
- 22 Jumde VR, Eisink NN. H. M, Witte MD, Minnaard AJ. J. Org. Chem. 2016; 81: 11439
- 23 Pedersen CM, Olsen J, Brka AB, Bols M. Chem. Eur. J. 2011; 17: 7080
- 24 Wan IC, Hamlin TA, Eisink NN. H. M, Marinus N, De Boer C, Vis CA, Codée JD. C, Witte MD, Minnaard AJ, Bickelhaupt FM. Eur. J. Org. Chem. 2021; 2021: 632
- 25 Li X, Wu J, Tang W. J. Am. Chem. Soc. 2022; 144: 3727
- 26 Lee D, Taylor MS. J. Am. Chem. Soc. 2011; 133: 3724
- 27 Suh CE, Carder HM, Wendlandt AE. ACS Chem. Biol. 2021; 16: 1814
- 28 Giese B, Gröninger KS, Witzel T, Korth H, Sustmann R. Angew. Chem. Int. Ed. Engl. 1987; 26: 233
- 29 Gorelik DJ, Desai SP, Jdanova S, Turner JA, Taylor MS. Chem. Sci. 2024; 15: 1204
- 30 Shatskiy A, Stepanova EV, Kärkäs MD. Nat. Rev. Chem. 2022; 6: 782
- 31 Wang Y, Carder HM, Wendlandt AE. Nature 2020; 578: 403
- 32 Carder HM, Wang Y, Wendlandt AE. J. Am. Chem. Soc. 2022; 144: 11870
- 33 Wan IC, Witte MD, Minnaard AJ. Chem. Commun. 2017; 53: 4926
- 34 Turner JA, Adrianov T, Taylor MS. J. Org. Chem. 2023; 88: 5713
- 35 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
- 36 Zhang Y.-A, Gu X, Wendlandt AE. J. Am. Chem. Soc. 2022; 144: 599
- 37 Carder HM, Suh CE, Wendlandt AE. J. Am. Chem. Soc. 2021; 143: 13798
- 38 Marinus N, Tahiri N, Duca M, Mouthaan LM. C. M, Bianca S, Van Den Noort M, Poolman B, Witte MD, Minnaard AJ. Org. Lett. 2020; 22: 5622
- 39 Turner JA, Rosano N, Gorelik DJ, Taylor MS. ACS Catal. 2021; 11: 11171
- 40 Zhao G, Yao W, Mauro JN, Ngai M.-Y. J. Am. Chem. Soc. 2021; 143: 1728
- 41 Yanagi M, Ueda Y, Ninomiya R, Imayoshi A, Furuta T, Mishiro K, Kawabata T. Org. Lett. 2019; 21: 5006
- 42 Kawabata T, Muramatsu W, Nishio T, Shibata T, Schedel H. J. Am. Chem. Soc. 2007; 129: 12890
- 43 Kawabata T, Furuta T. Chem. Lett. 2009; 38: 640
- 44 Lam K, Markó IE. Org. Lett. 2008; 10: 2773
- 45 Lam K, Markó IE. Tetrahedron 2009; 65: 10930
- 46 Wang G, Ho CC, Zhou Z, Hao Y.-J, Lv J, Jin J, Jin Z, Chi YR. J. Am. Chem. Soc. 2024; 146: 824
- 47 Lv W.-X, Chen H, Zhang X, Ho CC, Liu Y, Wu S, Wang H, Jin Z, Chi YR. Chem 2022; 8: 1518
- 48 Frihed TG, Bols M, Pedersen CM. Chem. Rev. 2015; 115: 3615
- 49 Simmons EM, Hartwig JF. Nature 2012; 483: 70
- 50 Frihed TG, Heuckendorff M, Pedersen CM, Bols M. Angew. Chem. Int. Ed. 2012; 51: 12285
- 51 Frihed TG, Pedersen CM, Bols M. Angew. Chem. Int. Ed. 2014; 53: 13889
- 52 Yang S, Chu C.-J, Lowary TL. Org. Lett. 2022; 24: 5614
- 53 Wang H.-Y, Yang K, Yin D, Liu C, Glazier DA, Tang W. Org. Lett. 2015; 17: 5272
- 54 Wang H, Yang K, Bennett SR, Guo S, Tang W. Angew. Chem. Int. Ed. 2015; 54: 8756
- 55 Song W, Zhao Y, Lynch JC, Kim H, Tang W. Chem. Commun. 2015; 51: 17475
- 56 Babu RS, O’Doherty GA. J. Am. Chem. Soc. 2003; 125: 12406
- 57 Babu RS, Zhou M, O’Doherty GA. J. Am. Chem. Soc. 2004; 126: 3428
- 58 Zhou M, O’Doherty GA. Org. Lett. 2006; 8: 4339
- 59 Lim W, Kim J, Rhee YH. J. Am. Chem. Soc. 2014; 136: 13618
- 60 Seo K, Rhee YH. Org. Lett. 2020; 22: 2178
- 61 Louie J, Grubbs RH. Organometallics 2002; 21: 2153
- 62 Kim J, Jeong W, Rhee YH. Org. Lett. 2017; 19: 242
- 63 Bae HJ, Jeong W, Lee JH, Rhee YH. Chem. Eur. J. 2011; 17: 1433
- 64 Yalamanchili S, Miller W, Chen X, Bennett CS. Org. Lett. 2019; 21: 9646
- 65 Chen H, Lin Z, Meng Y, Li J, Huang S.-H, Hong R. Org. Lett. 2023; 25: 6429
- 66 Beattie RJ, Hornsby TW, Craig G, Galan MC, Willis CL. Chem. Sci. 2016; 7: 2743
- 67 Trost BM, Ball ZT. J. Am. Chem. Soc. 2005; 127: 17644
- 68 Trost BM, Machacek MR, Ball ZT. Org. Lett. 2003; 5: 1895
- 69 Donohoe TJ, Winship PC. M, Pilgrim BS, Walter DS, Callens CK. A. Chem. Commun. 2010; 46: 7310
- 70 Yang Y, Zhang X, Yu B. Nat. Prod. Rep. 2015; 32: 1331
- 71 Meng S, Li X, Zhu J. Tetrahedron 2021; 88: 132140
- 72 Mukherjee MM, Ghosh R, Hanover JA. Front. Mol. Biosci. 2022; 9: 896187
- 73 Bennett CS, Galan MC. Chem. Rev. 2018; 118: 7931
- 74 Nielsen MM, Holmstrøm T, Pedersen CM. Angew. Chem. Int. Ed. 2022; 61: e202115394
- 75 Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science 2017; 355: 162
- 76 Levi SM, Li Q, Rötheli AR, Jacobsen EN. Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 35
- 77 Li Q, Levi SM, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 11865
- 78 Mayfield AB, Metternich JB, Trotta AH, Jacobsen EN. J. sAm. Chem. Soc. 2020; 142: 4061
- 79 Li Q, Levi SM, Wagen CC, Wendlandt AE, Jacobsen EN. Nature 2022; 608: 74
- 80 Beale TM, Moon PJ, Taylor MS. Org. Lett. 2014; 16: 3604
- 81 D’Angelo KA, Taylor MS. J. Am. Chem. Soc. 2016; 138: 11058
- 82 Douglas NL, Ley SV, Lücking U, Warriner SL. J. Chem. Soc., Perkin Trans. 1 1998; 51
- 83 Zhang Z, Ollmann IR, Ye X.-S, Wischnat R, Baasov T, Wong C.-H. J. Am. Chem. Soc. 1999; 121: 734
- 84 Sati GC, Martin JL, Xu Y, Malakar T, Zimmerman PM, Montgomery J. J. Am. Chem. Soc. 2020; 142: 7235
- 85 Chitnis SS, LaFortune JH. W, Cummings H, Liu LL, Andrews R, Stephan DW. Organometallics 2018; 37: 4540
- 86 Nielsen MM, Qiao Y, Wang Y, Pedersen CM. Eur. J. Org. Chem. 2020; 2020: 140
- 87 Walk JT, Buchan ZA, Montgomery J. Chem. Sci. 2015; 6: 3448
- 88 Oshima K, Aoyama Y. J. Am. Chem. Soc. 1999; 121: 2315
- 89 Kaji E, Nishino T, Ishige K, Ohya Y, Shirai Y. Tetrahedron Lett. 2010; 51: 1570
- 90 Kaji E, Yamamoto D, Shirai Y, Ishige K, Arai Y, Shirahata T, Makino K, Nishino T. Eur. J. Org. Chem. 2014; 2014: 3536
- 91 Le Mai Hoang K, He J, Báti G, Chan-Park MB, Liu X.-W. Nat. Commun. 2017; 8: 1146
- 92 Baek JY, Lee B.-Y, Jo MG, Kim KS. J. Am. Chem. Soc. 2009; 131: 17705
- 93 Baek JY, Kwon H.-W, Myung SJ, Park JJ, Kim MY, Rathwell DC. K, Jeon HB, Seeberger PH, Kim KS. Tetrahedron 2015; 71: 5315
- 94 Harnagel AP, Sheshova M, Zheng M, Zheng M, Skorupinska-Tudek K, Swiezewska E, Lupoli TJ. J. Am. Chem. Soc. 2023; 145: 15639
- 95 Zheng M, Zheng M, Lupoli TJ. ACS Infect. Dis. 2022; 8: 2035
- 96 Zheng M, Zheng MC, Kim H, Lupoli TJ. J. Am. Chem. Soc. 2023; 145: 15632
- 97 Lucas R, Balbuena P, Errey JC, Squire MA, Gurcha SS, McNeil M, Besra GS, Davis BG. ChemBioChem 2008; 9: 2197