Abstract
The use of combinatorial methods to discover new catalysts is one of the youngest
fields of combinatorial chemistry. The main focus of this review is the application
of combinatorial liquid- and solid-phase methods for the discovery and optimisation
of homogeneous catalysts. In addition, high-throughput screening techniques for fast
detection of activity and selectivity in catalytic reactions are discussed. The literature
from 1995 to December 2000 is covered.
1 Introduction
2 Methods in Combinatorial Catalysis
3 Combinatorial Liquid-Phase Methods
3.1 Reaction Examples
3.1.1 Carbene Insertion
3.1.2 Reductive Aldol Reaction
3.1.3 Michael Addition
3.1.4 Diethyl Zinc Addition to Aldehydes
3.1.5 Aza-Diels-Alder Reaction
3.2 Modular Ligand Systems for Homogeneous Metal Catalysis
4 Combinatorial Solid-Phase Methods
4.1 Screening for Metal Binders
4.2 Catalysts in C-C Bond Formation
4.2.1 Diethyl Zinc Addition to Aldehydes
4.2.2 Addition of Trimethylsilylcyanide to meso -Epoxides
4.2.3 Asymmetric Strecker Reaction
4.2.4 Allylic Substitution Reactions
4.3 Catalytic Oxidation and Reduction Reactions
4.3.1 Alkene Epoxidation
4.3.2 Catalytic Hydrogenation
4.4 Catalytic Phosphate Hydrolysis
5 High-Throughput Screening in Catalysis
5.1 IR-Thermography
5.2 Isotope Labelling/Pseudo Enantiomers
5.3 Fluorescence Assays
5.4 Reactive Dyes
5.5 One-pot Multi Substrate Screening
5.6 Screening of Mixtures of Catalysts
5.7 Miscellaneous Chromatographic Methods
6 Conclusion
Key words
combinatorial catalysis - catalysis - combinatorial chemistry - asymmetric catalysis
- high-throughput screening
References
<A NAME="RE05001SS-1">1 </A>
Balkenhohl F.
von dem Bussche-Hünnefeld C.
Lansky A.
Zechel C.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2289
<A NAME="RE05001SS-2">2 </A>
Früchtel JS.
Jung G.
Angew. Chem. Int. Ed. Engl.
1996,
35:
17
<A NAME="RE05001SS-3">3 </A>
Combinatorial Chemistry
Jung G.
Wiley-VCH;
Weinheim:
1999.
<A NAME="RE05001SS-4">4 </A>
Furka Á.
Sebestyén F.
Asgedom M.
Dibó G. In 14th International Congress of Biochemistry (Prague)
VSP, Utrecht;
The Netherlands:
1988.
p.47
<A NAME="RE05001SS-5">5 </A>
Combs, A. P. In Second Annual Boston College ArQule Symposium on Combinatorial Chemistry Boston, 2000.
<A NAME="RE05001SS-6">6 </A>
Briceño G.
Change H.
Sun X.
Schultz PG.
Xiang X.-D.
Science
1995,
273
<A NAME="RE05001SS-7">7 </A> For a review of combinatorial methods in material science:
Jandeleit B.
Schäfer DJ.
Powers TS.
Turner HW.
Weinberg WH.
Angew. Chem. Int. Ed.
1999,
38:
2494
<A NAME="RE05001SS-8">8 </A>
Gennari C.
Nestler HP.
Piarulli U.
Salom B.
Liebigs Ann./Recueil
1997,
637
<A NAME="RE05001SS-9">9 </A>
Brocchini S.
James K.
Tangpasuthadol JV.
Kohn J.
J. Am. Chem. Soc.
1997,
119:
4553
<A NAME="RE05001SS-10">10 </A>
Shuttleworth SJ.
Allin SM.
Wilson RD.
Nasturica D.
Synthesis
2000,
1035
<A NAME="RE05001SS-11">11 </A> During the preparation of this manuscript, a review concentrating on ”Combinatorial
and Evolution-Based Methods in the Creation of Enantioselective Catalysts" was published:
Reetz MT.
Angew. Chem. Int. Ed.
2001,
40:
312
<A NAME="RE05001SS-12">12 </A>
Snapper ML.
Hoveyda AH. In Combinatorial Chemistry
Fenniri H.
Oxford University Press;
Oxford:
2000.
p.433
<A NAME="RE05001SS-13">13 </A>
Kagan HB.
J. Organomet. Chem.
1998,
567:
3
<A NAME="RE05001SS-14">14 </A>
Crabtree RH.
Chem. Commun.
1999,
1611
<A NAME="RE05001SS-15">15 </A>
Bein T.
Curr. Opin. Sol. State Mat. Sci.
1999,
4:
85
<A NAME="RE05001SS-16">16 </A>
Bein T.
Angew. Chem. Int. Ed.
1999,
38:
323
<A NAME="RE05001SS-17">17 </A>
Maier WF.
Kirsten G.
Orschel M.
Weiss PA.
Chim. Oggi
2000,
18:
15
<A NAME="RE05001SS-18">18 </A>
Gennari F.
Seneci P.
Miertus S.
Catal. Rev. Sci. Engl.
2000,
42:
385
<A NAME="RE05001SS-19">19 </A>
Shimizu KD.
Snapper ML.
Hoveyda AH.
Chem.-Eur. J.
1998,
4:
1885
<A NAME="RE05001SS-20">20 </A>
Burgess K.
Lim HS.
Porte AM.
Sulikowski GA .
Angew. Chem. Int. Ed. Engl.
1996,
35:
220
<A NAME="RE05001SS-21">21 </A>
(CuOTf)C6 H6 and sparteine in THF were used.
<A NAME="RE05001SS-22">22 </A>
[Rh(nbd)]BPh4 and sparteine in toluene were used.
<A NAME="RE05001SS-23">23 </A>
Taylor SJ.
Morken JP.
J. Am. Chem. Soc.
1999,
121:
12202
<A NAME="RE05001SS-24">24 </A>
Abbrevations: i -Pr-pybox = 2,6-bis(4-isopropyl-2-oxazolin-2-yl)pyridine, t -Bu-box = 2,2"-isopropylidenebis(4-tert -butyl-2-oxazoline), Ph-semicorrin = 4-phenyl-α-[4-phenyloxazolidin-2-ylidene]-2-oxazoline-2-acetonitrile,
MOP = 2-(diphenylphosphino-2"-methoxy)-1,1"-binaphthyl, BINAP = 2,2"-bis(diphenylphosphino)-1,1"-binaphthyl,
DuPhos = 1,2-bis(2,5-dimethylphospholano)benzene, quinap = 1-(2-diphenylphosphino-1-naphtyl)isoquinoline,
cod = cyclooctadiene.
<A NAME="RE05001SS-25">25 </A>
Christoffers J.
Mann A.
Angew. Chem. Int. Ed.
2000,
39:
2752
<A NAME="RE05001SS-26">26 </A>
Soai K.
Niwa S.
Chem. Rev.
1992,
92:
833
<A NAME="RE05001SS-27">27 </A>
Kitamura M.
Hirosama SS.
Noyori R.
J. Am. Chem. Soc.
1998,
120:
9800
<A NAME="RE05001SS-28">28 </A>
Ding K.
Ishii A.
Mikami K.
Angew. Chem. Int. Ed.
1999,
38:
497
<A NAME="RE05001SS-29">29 </A>
Hattori K.
Yamamoto H.
Synlett
1993,
129
<A NAME="RE05001SS-30">30 </A>
Hattori K.
Yamamoto H.
Tetrahedron
1993,
49:
1749
<A NAME="RE05001SS-31">31 </A>
Jørgensen KA.
Angew. Chem. Int. Ed.
2000,
39:
3558
<A NAME="RE05001SS-32">32 </A>
Bromidge S.
Wilson PC.
Whiting A.
Tetrahedron Lett.
1998,
39:
8905
<A NAME="RE05001SS-33">33 </A>
Hayashi T. In Ferrocenes
Togni A.
Hayashi T.
VCH;
Weinheim:
1995.
p.105
<A NAME="RE05001SS-34">34 </A>
Togni A.
Angew. Chem. Int. Ed. Engl.
1996,
35:
1475
<A NAME="RE05001SS-35">35 </A>
Richards CJ.
Locke AJ.
Tetrahedron: Asymmetry
1998,
9:
2377
<A NAME="RE05001SS-36">36 </A>
von Matt P.
Pfaltz A.
Angew. Chem. Int. Ed. Engl.
1993,
32:
655
<A NAME="RE05001SS-37">37 </A>
Sprinz J.
Helmchen G.
Tetrahedron Lett.
1993,
34:
1769
<A NAME="RE05001SS-38">38 </A>
Dawson GJ.
Frost CG.
Williams JMJ.
Coote SJ.
Tetrahedron Lett.
1993,
34:
3149
<A NAME="RE05001SS-39">39 </A>
Takada H.
Ohe K.
Uemura S.
Angew. Chem. Int. Ed.
1999,
38:
1288
<A NAME="RE05001SS-40">40 </A>
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
<A NAME="RE05001SS-41">41 </A>
Noyori R.
Takaya H.
Acc. Chem. Res.
1990,
23:
345
<A NAME="RE05001SS-42">42 </A>
Nozaki K.
Sakai N.
Nanno T.
Higashijma T.
Mano S.
Horiushi T.
Takaya H.
J. Am. Chem. Soc.
1997,
119:
4413
<A NAME="RE05001SS-43">43 </A>
Uozumi Y.
Tanahashi A.
Lee S.-Y.
Hayashi T.
J. Org. Chem.
1993,
58:
1945
<A NAME="RE05001SS-44">44 </A>
Lipshutz BH.
Shin Y.-J.
Tetrahedron Lett.
1998,
39:
7017
<A NAME="RE05001SS-45">45 </A>
Selvakumar K.
Valentini M.
Wörle M.
Pregosin PS.
Albinati A.
Organometallics
1999,
18:
1207
<A NAME="RE05001SS-46">46 </A>
Jacobsen EN.
Zhang W.
Muci AR.
Ecker JR.
Deng L.
J. Am. Chem. Soc.
1991,
113:
7063
<A NAME="RE05001SS-47">47 </A>
Zhang W.
Loebach JL.
Wilson SR.
Jacobsen EN.
J. Am. Chem. Soc.
1990,
112:
2801
<A NAME="RE05001SS-48">48 </A>
Palucki M.
McCormick GJ.
Jacobsen EN.
Tetrahedron Lett.
1995,
36:
5457
<A NAME="RE05001SS-49">49 </A>
Brandes BD.
Jacobsen EN.
Tetrahedron Lett.
1995,
36:
5123
<A NAME="RE05001SS-50">50 </A>
Li Z.
Conser KR.
Jacobsen EN.
J. Am. Chem. Soc.
1993,
115:
5326
<A NAME="RE05001SS-51">51 </A>
O"Connor KJ.
Wey S.-J.
Burrows CJ.
Tetrahedron Lett.
1992,
33:
1001
<A NAME="RE05001SS-52">52 </A>
Fukuda T.
Katsuki T.
Synlett
1995,
825
<A NAME="RE05001SS-53">53 </A>
Lam F.
Xu JX.
Chan KS.
J. Org. Chem.
1996,
61:
8414
<A NAME="RE05001SS-54">54 </A>
Pfenninger A.
Synthesis
1986,
89
<A NAME="RE05001SS-55">55 </A>
Sharpless KB.
Behrens CH.
Katsuki T.
Lee AWM.
Martin VS.
Taktani M.
Viti SM.
Walker FJ.
Woodard SS.
Pure Appl. Chem.
1983,
55:
589
<A NAME="RE05001SS-56">56 </A>
Pfaltz A.
Acta Chem. Scand.
1996,
50:
189
<A NAME="RE05001SS-57">57 </A>
Porte AM.
Reibenspies J.
Burgess K.
J. Am. Chem. Soc.
1998,
120:
9180
<A NAME="RE05001SS-58">58 </A>
Kranich R.
Eis K.
Geis O.
Mühle S.
Bats JW.
Schmalz H.-G.
Chem.-Eur. J.
2000,
6:
2874
<A NAME="RE05001SS-59">59 </A>
Francis MB.
Finney NS.
Jacobsen EN.
J. Am. Chem. Soc.
1996,
118:
8983
<A NAME="RE05001SS-60">60 </A>
Lin G.
Ellman JA.
J. Org. Chem.
1995,
60:
7712
<A NAME="RE05001SS-61">61 </A>
Gennari C.
Ceccarelli S.
Piarulli U.
Montalbetti CAGN.
Jackson RFW.
J. Org. Chem.
1998,
63:
5312
<A NAME="RE05001SS-62">62 </A>
Brouwer AJ.
van der Linden HJ.
Liskamp RMJ.
J. Org. Chem.
2000,
65:
1750
<A NAME="RE05001SS-63">63 </A>
Gao X.
Kagan HB.
Chirality
1998,
10:
120
<A NAME="RE05001SS-64">64 </A>
Cole BM.
Shimizu KD.
Krueger CA.
Harrity JPA.
Snapper ML.
Hoveyda AH.
Angew. Chem. Int. Ed. Engl.
1996,
35:
1668
<A NAME="RE05001SS-65">65 </A>
Shimizu KD.
Cole BM.
Krueger CA.
Kuntz KW.
Snapper ML.
Hoveyda AH.
Angew. Chem. Int. Ed. Engl.
1997,
36:
1704
<A NAME="RE05001SS-66">66 </A>
Sigman MS.
Jacobsen EN.
J. Am. Chem. Soc.
1998,
120:
4901
<A NAME="RE05001SS-67">67 </A>
Sigman MS.
Vachal P.
Jacobsen EN.
Angew. Chem. Int. Ed.
2000,
39:
1279
<A NAME="RE05001SS-68">68 </A>
Gilbertson SR.
Collibee SE.
Agrakov A.
J. Am. Chem. Soc.
2000,
122:
6522
<A NAME="RE05001SS-69">69 </A>
Francis MB.
Jacobsen EN.
Angew. Chem. Int. Ed.
1999,
38:
937
<A NAME="RE05001SS-70">70 </A>
Gilbertson SR.
Wang X.
Tetrahedron
1999,
55:
11609
<A NAME="RE05001SS-71">71 </A>
The relationship between the two phosphine-containing amino acids is determined by
their relative position in the peptide sequence. If the first is placed in the position
i of the peptide sequence, the second is e.g. in the i +4 position. In this case three other amino acids are positioned between them.
<A NAME="RE05001SS-72">72 </A>
Menger FM.
Eliseev AV.
Migulin VA.
J. Org. Chem.
1995,
60:
6666
<A NAME="RE05001SS-73">73 </A>
Scanlan TS.
Prudent JR.
Schultz PG.
J. Am. Chem. Soc.
1991,
113:
9397
<A NAME="RE05001SS-74">74 </A>
Menger FM.
Ding J.
Barragan V.
J. Org. Chem.
1998,
63:
7578
<A NAME="RE05001SS-75">75 </A>
Berkessel A.
Hérault DA.
Angew. Chem. Int. Ed.
1999,
38:
102
<A NAME="RE05001SS-76">76 </A>
Berkessel A.
Riedel R.
J. Comb. Chem.
2000,
2:
215
<A NAME="RE05001SS-77">77 </A>
Taylor SJ.
Morken JP.
Science
1998,
280:
267
<A NAME="RE05001SS-78">78 </A>
Reetz MT.
Becker MH.
Kühling KM.
Holzwarth A.
Angew. Chem. Int. Ed.
1998,
37:
2647
<A NAME="RE05001SS-79">79 </A>
Reetz MT.
Becker MH.
Liebl M.
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
1236
<A NAME="RE05001SS-80">80 </A>
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
<A NAME="RE05001SS-81">81 </A>
Fürstner A.
Top. Catal.
1998,
4:
285
<A NAME="RE05001SS-82">82 </A>
Fürstner A.
Top. Organomet. Chem.
1998,
1:
37
<A NAME="RE05001SS-83">83 </A>
Schuster M.
Blechert S.
Angew. Chem. Int. Ed. Engl.
1997,
36:
2036
<A NAME="RE05001SS-84">84 </A>
Reetz MT.
Becker MH.
Klein H.-W.
Stöckigt D.
Angew. Chem. Int. Ed.
1999,
38:
1758
<A NAME="RE05001SS-85">85 </A>
Horeau A.
Nouaille A.
Tetrahedron Lett.
1990,
31:
2707
<A NAME="RE05001SS-86">86 </A>
Guo J.
Wu J.
Siuzdak G.
Finn MG.
Angew. Chem. Int. Ed.
1999,
38:
1755
<A NAME="RE05001SS-87">87 </A>
Shaughnessy KH.
Kim P.
Hartwig JF.
J. Am. Chem. Soc.
1999,
121:
2123
<A NAME="RE05001SS-88">88 </A>
Copeland KH.
Miller SJ.
J. Am. Chem. Soc.
1999,
121:
4306
<A NAME="RE05001SS-89">89 </A>
Cooper AC.
McAlexander LH.
Lee D.-H.
Torres MT.
Crabtree RH.
J. Am. Chem. Soc.
1998,
120:
9971
<A NAME="RE05001SS-90">90 </A>
Herrmann WA.
Brossmer C.
Reisinger C.-P.
Riermeier TH.
Öfele K.
Beller M.
Chem.-Eur. J.
1997,
3:
1357
<A NAME="RE05001SS-91">91 </A>
Corey EJ.
Bakshi RK.
Shibati S.
J. Am. Chem. Soc.
1987,
109:
5551
<A NAME="RE05001SS-92">92 </A>
Mikami K.
Angelaud R.
Ding K.
Ishii A.
Tanaka A.
Sawada N.
Kudo K.
Senda M.
Chem.-Eur. J.
2001,
7:
730
<A NAME="RE05001SS-93">93 </A>
Reetz MT.
Kühling KM.
Deege A.
Hinrichs H.
Belder D.
Angew. Chem. Int. Ed.
2000,
39:
3891
<A NAME="RE05001SS-94">94 </A>
MegaBASE is commercially available from Amersham Pharmacia Biotech (Freiburg, Germany).