Abstract
The Michael addition-cyclodehydration of a 6-aminouracil and
alkynone proceeds to give 5-deazapterin derivatives with total control
of regiochemistry. This simple and facile cyclocondensation process
is catalyzed by zinc(II) bromide or ytterbium(III) trifluoromethanesulfonate
at 110 °C, providing the heteroannulated products in up
to 94% yield.
Key words
pyridopyrimidines - uracil derivatives - Bohlmann-Rahtz
heteroannulation - heterocycles - Lewis acids
References
<A NAME="RD10402ST-1A">1a </A>
Lunt E.
Newton CC. In
Comprehensive Heterocyclic Chemistry
3:
Katritzky AR.
Rees CW.
Boulton AJ.
McKillop A.
Pergamon Press;
Oxford:
1984.
p.199
<A NAME="RD10402ST-1B">1b </A>
Lunt E.
Newton CC. In
Comprehensive
Heterocyclic Chemistry
3:
Katritzky AR.
Rees CW.
Boulton AJ.
McKillop A.
Pergamon Press;
Oxford:
1984.
p.232
<A NAME="RD10402ST-1C">1c </A>
Lunt E.
Newton CC. In
Comprehensive
Heterocyclic Chemistry
3:
Katritzky AR.
Rees CW.
Boulton AJ.
McKillop A.
Pergamon Press;
Oxford:
1984.
p.260-261
<A NAME="RD10402ST-1D">1d </A>
Brown JD. In
Comprehensive Heterocyclic Chemistry
3:
Katritzky AR.
Pergamon
Press;
Oxford:
1984.
p.57
<A NAME="RD10402ST-1E">1e </A>
Bradshaw TK.
Hutchinson DW.
Chem.
Soc. Rev.
1977,
6:
43
<A NAME="RD10402ST-2A">2a </A>
Quiroga J.
Cruz S.
Insuasty B.
Abonía R.
Heterocycl.
Commun.
2000,
6:
275
<A NAME="RD10402ST-2B">2b </A>
Quiroga J.
Cruz S.
Insuasty B.
Abonía R.
Nogueras M.
Sánchez A.
Cobo J.
Low JN.
J. Heterocycl. Chem.
2001,
38:
53
<A NAME="RD10402ST-3">3 </A>
Thakur AJ.
Saikia P.
Prajapati D.
Sandhu JS.
Synlett
2001,
1299
<A NAME="RD10402ST-4">4 </A>
Pérez-Pérez M.-J.
Priego E.-M.
Jimeno M.-L.
Camarasa M.-J.
Synlett
2002,
155
<A NAME="RD10402ST-5">5 </A>
Bhuyan P.
Boruah RC.
Sandhu JS.
J. Org. Chem.
1990,
55:
568
<A NAME="RD10402ST-6A">6a </A>
Hutzenlaub W.
Pfleiderer W.
Liebigs
Ann. Chem.
1979,
1847
<A NAME="RD10402ST-6B">6b </A>
Müller CE.
Geis U.
Hipp J.
Schobert U.
Frobenius W.
Pawloski M.
Suzuki F.
Sandoval-Ramírez J.
J.
Med. Chem.
1997,
40:
4396
<A NAME="RD10402ST-7">7 </A>
Kumar R.
Tyrrell DLJ.
Bioorg.
Med. Chem. Lett.
2001,
11:
2917 ;
and references cited therein
<A NAME="RD10402ST-8">8 </A>
Mitchell HK.
Snell EE.
Williams RJ.
J. Am. Chem. Soc.
1941,
63:
2284
<A NAME="RD10402ST-9">9 </A>
Scott JM.
Weir DG.
Kirke P. In
Folate and Neural Tube defects. Folate in
Health and Disease
Bailey L. B., Marcel Dekker;
New
York:
1994.
Chap. 12.
p.329-360
<A NAME="RD10402ST-10A">10a </A>
Grivsky EM.
Lee S.
Sigel CW.
Duch DS.
Nichol CA.
J. Med. Chem.
1980,
23:
327
<A NAME="RD10402ST-10B">10b </A>
Matsumoto J.
Minami S.
J. Med. Chem.
1975,
18:
74
<A NAME="RD10402ST-10C">10c </A>
Suzuki N.
Chem.
Pharm. Bull.
1980,
28:
761
<A NAME="RD10402ST-10D">10d </A>
Oakes V.
Rydon HN.
J. Chem. Soc.
1956,
4433
<A NAME="RD10402ST-10E">10e </A>
DeGraw JI.
Kisliuk RL.
Gaumont Y.
Baugh CM.
J.
Med. Chem.
1974,
17:
470
<A NAME="RD10402ST-10F">10f </A>
Zakharov AV.
Gavrilov MYu.
Novoselova GN.
Vakhrin MI.
Konshin ME.
Khim-Farm. Zh.
1996,
30:
39
<A NAME="RD10402ST-10G">10g </A>
Deyanov AB.
Niyazov RK.
Nazmetdinov FY.
Syropyatov BY.
Kolla VE.
Konshin ME.
Khim-Farm. Zh.
1991,
25:
26
<A NAME="RD10402ST-10H">10h </A>
Heckler RE, and
Jourdan GP. inventors; Eur.
Patent 414 386.
; Chem. Abstr. , 1991 , 115 , 71630
<A NAME="RD10402ST-10I">10i </A>
Gangjee A.
Adair O.
Queener SF.
Bioorg.
Med. Chem.
2001,
9:
2929
<A NAME="RD10402ST-11A">11a </A>
Majumdar KC.
Bhattacharyya T.
Synthesis
2001,
1568
<A NAME="RD10402ST-11B">11b </A>
Bhuyan P.
Boruah RC.
Sandhu JS.
J. Org. Chem.
1990,
55:
568
<A NAME="RD10402ST-11C">11c </A>
Broom AD.
Shim JL.
Anderson GL.
J. Org. Chem.
1976,
41:
1095
<A NAME="RD10402ST-11D">11d </A>
Kajino M.
Meguro K.
Heterocycles
1990,
31:
2153
<A NAME="RD10402ST-11E">11e </A>
Rosas N.
Sharma P.
Alvarez C.
Cabrera A.
Ramírez R.
Delgado A.
Arzoumanian H.
J.
Chem. Soc., Perkin Trans. 1
2001,
2341
<A NAME="RD10402ST-12">12 </A>
Bohlmann F.
Rahtz D.
Chem. Ber.
1957,
90:
2265
<A NAME="RD10402ST-13A">13a </A>
Moody CJ.
Bagley MC.
Synlett
1998,
361
<A NAME="RD10402ST-13B">13b </A>
Moody CJ.
Bagley MC.
Chem.
Commun.
1998,
2049
<A NAME="RD10402ST-13C">13c </A>
Bagley MC.
Bashford KE.
Hesketh CL.
Moody CJ.
J.
Am. Chem. Soc.
2000,
122:
3301
<A NAME="RD10402ST-13D">13d </A>
Adlington RM.
Baldwin JE.
Catterick D.
Pritchard GJ.
Tang LT.
J. Chem. Soc., Perkin Trans. 1
2000,
2311 ; and references cited therein
<A NAME="RD10402ST-14">14 </A>
Bagley MC.
Dale JW.
Bower J.
Synlett
2001,
1149
<A NAME="RD10402ST-15">15 </A>
Bagley MC.
Dale JW.
Hughes DD.
Ohnesorge M.
Phillips NG.
Bower J.
Synlett
2001,
1523
<A NAME="RD10402ST-16">16 </A>
Bagley MC.
Hughes DD.
Lloyd R.
Powers VEC.
Tetrahedron
Lett.
2001,
42:
6585
<A NAME="RD10402ST-17">17 </A>
In a typical
experimental procedure, 4-(trimethylsilyl)but-3-yn-2-one 4a (0.34 g, 2.4 mmol) was added to a stirred solution
of 6-aminouracil 3a (0.31 g, 2.4 mmol)
and zinc(II) bromide (55 mg, 0.24 mmol) in DMSO (5 mL). The mixture was
stirred at 110 °C for 72 hours, allowed to cool and water (30
mL) was added. The precipitated solid was washed with water and
dried to give 6a (0.26 g, 60%)
as a pale yellow solid, mp >260 °C (decomp.) (Found:
C, 54.66; H, 4.27; N, 23.56. Calc. for C8 H7 N3 O2 :
C, 54.24; H, 3.98; N, 23.72%) (Found MH+ ,
178.0619. C8 H7 N3 O2 requires
178.0616); IR(nujol)/cm-1 :
3310, 3120, 1705, 1695; 1 H NMR (d
6
-DMSO,
400 MHz) δ(ppm) 11.41 (1 H, s, NH), 11.12 (1 H, s, NH),
7.96 (1 H, d, J = 7.9 Hz, 5-H),
6.92 (1 H, d, J = 7.9 Hz, 6-H),
2.33 (3 H, s, Me); 13 C NMR (d
6
-DMSO,
100 MHz) δ (ppm) 163.9 (C), 161.8 (C), 151.5 (C),
149.9 (C), 135.9 (CH), 118.1 (CH), 106.8 (C), 23.8 (Me); m/z (CI) 178 (MH+ , 24%).