Synthesis 2003(11): 1683-1692
DOI: 10.1055/s-2003-40888
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

A Practical Oxone®-Mediated, High-Throughput, Solution-Phase Synthesis of Benzimidazoles from 1,2-Phenylenediamines and Aldehydes and its Application to Preparative Scale Synthesis

Pierre L. Beaulieu*, Bruno Haché, Elisabeth von Moos
Boehringer Ingelheim (Canada) Ltd., Research and Development, 2100 Cunard Street, Laval (Québec) H7S 2G5, Canada
Fax: +1(450)6828434; e-Mail: pbeaulieu@lav.boehringer-ingelheim.com;
Further Information

Publication History

Received 31 March 2003
Publication Date:
25 July 2003 (online)

Abstract

Addition of oxone® to a mixture of a 1,2-phenylenediamine and an aldehyde in wet DMF at room temperature results in rapid formation of benzimidazoles under very mild conditions. The reaction is applicable to a wide range of substrates including aliphatic, aromatic and heteroaromatic aldehydes, and is not significantly affected by steric or electronic effects. In most cases, crude products are isolated in good to excellent yields (59-95%) and homogeneities (86-99%) by simple precipitation or extraction from the reaction mixture and do not require additional purification. Limitations to the scope of this methodology were encountered in cases where aldehydes were sensitive to oxone® under the acidic reaction conditions. The features of this methodology make it particularly well suited for the high-throughput, solution-phase synthesis of benzimidazole libraries. The low cost and simplicity of this procedure makes it equally attractive for preparative-scale syntheses where safety and environmental issues are of greater concern.

    References

  • 1a Spasov AA. Yozhitsa IN. Bugaeva LI. Anisimova VA. Pharm. Chem. J.  1999,  33:  232 
  • 1b Preston PN. Chem. Heterocycl. Compd.  1980,  40:  531 
  • 2a Evans BE. Rittle KE. Bock MG. DiPardo RM. Freidinger RM. Whitter WL. Lundell GF. Veber DF. Anderson PS. Chang RSL. Lotti VJ. Cerino DJ. Chen TB. Kling PJ. Kunkel KA. Springer JP. Hirshfield J. J. Med. Chem.  1988,  31:  2235 
  • 2b Mason JS. Morize I. Menard PR. Cheney DL. Hulme C. Labaudiniere RF. J. Med. Chem.  1999,  42:  3251 
  • See for example:
  • 3a Chi Y.-C. Sun C.-M. Synlett  2000,  591 
  • 3b Huang W. Scarborough RM. Tetrahedron Lett.  1999,  40:  2665 
  • 3c Wu Z. Rea P. Wickham G. Tetrahedron Lett.  2000,  41:  9871 
  • 3d Thomas JB. Fall MJ. Cooper JB. Burgess JP. Carroll FI. Tetrahedron Lett.  1997,  38:  5099 
  • 3e Phillips GB. Wei GP. Tetrahedron Lett.  1996,  37:  4887 
  • 3f Sun Q. Yan B. Bioorg. Med. Chem. Lett.  1998,  8:  361 
  • 3g Smith JM. Krchák V. Tetrahedron Lett.  1999,  40:  7633 
  • 3h Mayer JP. Lewis GS. McGee C. Bankaitis-Davis D. Tetrahedron Lett.  1998,  39:  6655 
  • 4 Brain CT. Brunton SA. Tetrahedron Lett.  2002,  43:  1893 
  • 5a White AW. Almassy R. Calvert AH. Curtin NJ. Griffin RJ. Hostomsky Z. Maegley K. Newell DR. Srinivasan S. Golding BT. J. Med. Chem.  2000,  43:  4084 
  • 5b Hendrickson JB. Hussoin MS. J. Org. Chem.  1987,  52:  4137 
  • 5c Dunwell DW. Evans D. Smith CE. Williamson WRN. J. Med. Chem.  1975,  18:  692 
  • 5d Güngör T. Fouquet A. Teulon J.-M. Provost D. Cazes M. Cloarec A. J. Med. Chem.  1992,  35:  4455 
  • 5e Barni E. Savarino P. J. Heterocycl. Chem.  1979,  16:  1583 
  • 6a Smith JG. Ho I. Tetrahedron Lett.  1971,  38:  3541 
  • 6b Jonas R. Klockow M. Lues I. Prücher H. Schliep HJ. Wurziger H. Eur. J. Med. Chem.  1993,  28:  129 
  • 7a Blettner CG. König WA. Rühter G. Stenzel W. Schotten T. Synlett  1999,  307 
  • 7b Sun Q. Gatto B. Yu C. Liu A. Liu LF. LaVoie EJ. J. Med. Chem.  1995,  38:  3638 
  • 7c Ben-Alloum A. Bakkas S. Soufiaoui M. Tetrahedron Lett.  1998,  39:  4481 
  • 7d Satz AL. Bruice TC. Bioorg. Med. Chem. Lett.  1999,  9:  3261 
  • 7e Rangarajan M. Kim JS. Sim S.-P. Liu A. Liu LR. LaVoie EJ. Bioorg. Med. Chem.  2000,  8:  2591 
  • 7f Black DSt.C. Kumar N. Wong LCH. Synthesis  1986,  474 
  • 8a Denny WA. Rewcastle GW. Baguley BC. J. Med. Chem.  1990,  33:  814 
  • 8b Dang Q. Brown BS. Erion MD. Tetrahedron Lett.  2000,  41:  6559 
  • 8c Singh MP. Sasmal S. Lu W. Chatterjee MN. Synthesis  2000,  1380 
  • 8d Gravatt GL. Baguley BC. Wilson WR. Denny WA. J. Med. Chem.  1994,  37:  4338 
  • 9a Vanden Eynde JJ. Delfosse F. Lor P. Van Haverbeke Y. Tetrahedron  1995,  51:  5813 
  • 9b Hopkins KT. Wilson WD. Bender BC. McCurdy DR. Hall JE. Tidwell RR. Kumar A. Bajic M. Boykin DW. J. Med. Chem.  1998,  41:  3872 
  • 9c Lombardy RL. Tanious FA. Ramachandran K. Tidwell RR. Wilson WD. J. Med. Chem.  1996,  39:  1452 
  • 10 Chikashita H. Nishida S. Miyazaki M. Morita Y. Itoh K. Bull Chem. Soc. Jpn.  1987,  60:  737 
  • 11 Pätzold F. Zeuner F. Heyer Th. Niclas H.-J. Synth. Commun.  1992,  22:  281 
  • 12a Ridley HF. Spickett RGW. Timmis GM. J. Heterocycl. Chem.  1965,  2:  453 
  • 12b Göker H. Kus C. Boykin DW. Yildiz S. Altanlar N. Bioorg. Med. Chem.  2002,  10:  2589 
  • 13 Yukawa H. Nagatani T. Torisawa Y. Okaichi Y. Tada N. Furuta T. Minamikawa J.-I. Nishi T. Bioorg. Med. Chem. Lett.  1997,  7:  1267 
  • 14a Narsaiah AV. Synlett  2002,  1178 
  • 14b For other uses of oxone® in organic synthesis, see for example: Lee K.-J. You H.-W. Synlett  2001,  105 ; and references cited therein
  • 14c After submission of this manuscript, Borhan et al. reported on the use of oxone® for the oxidation of aldehydes to carboxylic acids: Travis BR. Sivakumar M. Hollist GO. Borhan B. Org. Lett.  2003,  5:  1031 ; it appears that formation of benzimidazoles under the present reaction conditions is faster than oxidation of the aldehyde substrate to the corresponding carboxylic acid. It is possible however that this latter pathway can become competitive for less reactive substrates and account for some of the lower yields
  • 15 For an alternative reduction of nitro groups with stannous chloride, see for example: Bellamy FD. Ou K. Tetrahedron Lett.  1984,  25:  839 
  • The formation of an intermediate formate ester from the starting aldehyde through a Baeyer-Villiger oxidation is inferred from detection of the corresponding alcohol. Precedent for this kind of process can be found in the literature, but usually involves organic peracids as oxidant. See for example:
  • 16a Yeager GW. Schissel DN. Synthesis  1991,  63 
  • 16b Krow GR. Org. React.  1993,  43:  251 
  • 16c Occurrence of an oxone®-promoted Baeyer-Villiger process has been proposed in the literature: Wu X.-Y. She X. Shi Y. J. Am. Chem. Soc.  2002,  124:  8792 ; see also earlier reference (Ref. 14c)
  • 17 DMF alone or its dimethyl acetal can also promote conversion of 1,2-phenylenediamines to 2H-benz-imidazoles, but this usually requires elevated temperatures and is not suspected to occur under the present oxone®-promoted reaction conditions: Mataka S. Shimojyo Y. Hashimoto I. Tashiro M. Liebigs Ann.  1995,  10:  1823 
  • It is very likely that the quenched reaction mixtures still retain some oxidizing potential and should be disposed of appropriately to avoid hazardous decompositions. It has been reported for example that oxone® will lose active oxygen slowly under alkaline conditions, see:
  • 19a Kennedy RJ. Stock AM. J. Org. Chem.  1960,  25:  1901 
  • 19b Ball DL. Edwards JO. J. Am. Chem. Soc.  1956,  78:  1125 
  • 20a Chang J. Zhao K. Pan S. Tetrahedron Lett.  2002,  43:  951 ; and references cited therein
  • 20b Hari A. Karan C. Rodrigues WC. Miller BL. J. Org. Chem.  2001,  66:  991 
18

The ratio of 14 to 15 did not vary significantly upon prolonged reaction times indicating that under the reaction conditions, equilibration of the diamine 15 to benzamidine 3 and eventually to product 14 did not occur.