Abstract
Addition of oxone® to a mixture of a 1,2-phenylenediamine
and an aldehyde in wet DMF at room temperature results in rapid
formation of benzimidazoles under very mild conditions. The reaction
is applicable to a wide range of substrates including aliphatic,
aromatic and heteroaromatic aldehydes, and is not significantly
affected by steric or electronic effects. In most cases, crude products
are isolated in good to excellent yields (59-95%)
and homogeneities (86-99%) by simple precipitation
or extraction from the reaction mixture and do not require additional
purification. Limitations to the scope of this methodology were
encountered in cases where aldehydes were sensitive to oxone® under
the acidic reaction conditions. The features of this methodology
make it particularly well suited for the high-throughput, solution-phase
synthesis of benzimidazole libraries. The low cost and simplicity
of this procedure makes it equally attractive for preparative-scale
syntheses where safety and environmental issues are of greater concern.
Key words
benzimidazoles - heterocycles - aldehydes - amines - oxone - combinatorial chemistry
References
1a
Spasov AA.
Yozhitsa IN.
Bugaeva LI.
Anisimova VA.
Pharm. Chem. J.
1999,
33:
232
1b
Preston PN.
Chem. Heterocycl. Compd.
1980,
40:
531
2a
Evans BE.
Rittle KE.
Bock MG.
DiPardo RM.
Freidinger RM.
Whitter WL.
Lundell GF.
Veber DF.
Anderson PS.
Chang RSL.
Lotti VJ.
Cerino DJ.
Chen TB.
Kling PJ.
Kunkel KA.
Springer JP.
Hirshfield J.
J.
Med. Chem.
1988,
31:
2235
2b
Mason JS.
Morize I.
Menard PR.
Cheney DL.
Hulme C.
Labaudiniere RF.
J.
Med. Chem.
1999,
42:
3251
See for example:
3a
Chi Y.-C.
Sun C.-M.
Synlett
2000,
591
3b
Huang W.
Scarborough RM.
Tetrahedron Lett.
1999,
40:
2665
3c
Wu Z.
Rea P.
Wickham G.
Tetrahedron
Lett.
2000,
41:
9871
3d
Thomas JB.
Fall MJ.
Cooper JB.
Burgess JP.
Carroll FI.
Tetrahedron Lett.
1997,
38:
5099
3e
Phillips GB.
Wei GP.
Tetrahedron
Lett.
1996,
37:
4887
3f
Sun Q.
Yan B.
Bioorg. Med. Chem. Lett.
1998,
8:
361
3g
Smith JM.
Krch ák V.
Tetrahedron Lett.
1999,
40:
7633
3h
Mayer JP.
Lewis GS.
McGee C.
Bankaitis-Davis D.
Tetrahedron
Lett.
1998,
39:
6655
4
Brain CT.
Brunton SA.
Tetrahedron Lett.
2002,
43:
1893
5a
White AW.
Almassy R.
Calvert AH.
Curtin NJ.
Griffin RJ.
Hostomsky Z.
Maegley K.
Newell DR.
Srinivasan S.
Golding BT.
J. Med. Chem.
2000,
43:
4084
5b
Hendrickson JB.
Hussoin MS.
J.
Org. Chem.
1987,
52:
4137
5c
Dunwell DW.
Evans D.
Smith CE.
Williamson WRN.
J.
Med. Chem.
1975,
18:
692
5d
Güngör T.
Fouquet A.
Teulon J.-M.
Provost D.
Cazes M.
Cloarec A.
J. Med.
Chem.
1992,
35:
4455
5e
Barni E.
Savarino P.
J. Heterocycl. Chem.
1979,
16:
1583
6a
Smith JG.
Ho I.
Tetrahedron
Lett.
1971,
38:
3541
6b
Jonas R.
Klockow M.
Lues I.
Prücher H.
Schliep HJ.
Wurziger H.
Eur. J. Med. Chem.
1993,
28:
129
7a
Blettner CG.
König WA.
Rühter G.
Stenzel W.
Schotten T.
Synlett
1999,
307
7b
Sun Q.
Gatto B.
Yu C.
Liu A.
Liu LF.
LaVoie EJ.
J. Med. Chem.
1995,
38:
3638
7c
Ben-Alloum A.
Bakkas S.
Soufiaoui M.
Tetrahedron
Lett.
1998,
39:
4481
7d
Satz AL.
Bruice TC.
Bioorg.
Med. Chem. Lett.
1999,
9:
3261
7e
Rangarajan M.
Kim JS.
Sim S.-P.
Liu A.
Liu LR.
LaVoie EJ.
Bioorg. Med. Chem.
2000,
8:
2591
7f
Black DSt.C.
Kumar N.
Wong LCH.
Synthesis
1986,
474
8a
Denny WA.
Rewcastle GW.
Baguley BC.
J.
Med. Chem.
1990,
33:
814
8b
Dang Q.
Brown BS.
Erion MD.
Tetrahedron
Lett.
2000,
41:
6559
8c
Singh MP.
Sasmal S.
Lu W.
Chatterjee MN.
Synthesis
2000,
1380
8d
Gravatt GL.
Baguley BC.
Wilson WR.
Denny WA.
J.
Med. Chem.
1994,
37:
4338
9a
Vanden Eynde JJ.
Delfosse F.
Lor P.
Van Haverbeke Y.
Tetrahedron
1995,
51:
5813
9b
Hopkins KT.
Wilson WD.
Bender BC.
McCurdy DR.
Hall JE.
Tidwell RR.
Kumar A.
Bajic M.
Boykin DW.
J. Med. Chem.
1998,
41:
3872
9c
Lombardy RL.
Tanious FA.
Ramachandran K.
Tidwell RR.
Wilson WD.
J. Med. Chem.
1996,
39:
1452
10
Chikashita H.
Nishida S.
Miyazaki M.
Morita Y.
Itoh K.
Bull
Chem. Soc. Jpn.
1987,
60:
737
11
Pätzold F.
Zeuner F.
Heyer Th.
Niclas H.-J.
Synth. Commun.
1992,
22:
281
12a
Ridley HF.
Spickett RGW.
Timmis GM.
J. Heterocycl.
Chem.
1965,
2:
453
12b
Göker H.
Kus C.
Boykin DW.
Yildiz S.
Altanlar N.
Bioorg. Med. Chem.
2002,
10:
2589
13
Yukawa H.
Nagatani T.
Torisawa Y.
Okaichi Y.
Tada N.
Furuta T.
Minamikawa J.-I.
Nishi T.
Bioorg. Med. Chem. Lett.
1997,
7:
1267
14a
Narsaiah AV.
Synlett
2002,
1178
14b For other uses of oxone® in
organic synthesis, see for example: Lee K.-J.
You H.-W.
Synlett
2001,
105 ; and references cited therein
14c After submission of this
manuscript, Borhan et al. reported on the use of oxone® for
the oxidation of aldehydes to carboxylic acids: Travis BR.
Sivakumar M.
Hollist GO.
Borhan B.
Org.
Lett.
2003,
5:
1031 ;
it appears that formation of benzimidazoles under the present reaction conditions
is faster than oxidation of the aldehyde substrate to the corresponding
carboxylic acid. It is possible however that this latter pathway
can become competitive for less reactive substrates and account
for some of the lower yields
15 For an alternative reduction of
nitro groups with stannous chloride, see for example: Bellamy FD.
Ou K.
Tetrahedron
Lett.
1984,
25:
839
The formation of an intermediate
formate ester from the starting aldehyde through a Baeyer-Villiger
oxidation is inferred from detection of the corresponding alcohol. Precedent
for this kind of process can be found in the literature, but usually
involves organic peracids as oxidant. See for example:
16a
Yeager GW.
Schissel DN.
Synthesis
1991,
63
16b
Krow GR.
Org. React.
1993,
43:
251
16c Occurrence of an oxone® -promoted
Baeyer-Villiger process has been proposed in the literature: Wu X.-Y.
She X.
Shi Y.
J. Am. Chem. Soc.
2002,
124:
8792 ; see also earlier reference (Ref. 14c)
17 DMF alone or its dimethyl acetal
can also promote conversion of 1,2-phenylenediamines to 2H -benz-imidazoles, but this usually requires
elevated temperatures and is not suspected to occur under the present
oxone® -promoted reaction conditions: Mataka S.
Shimojyo Y.
Hashimoto I.
Tashiro M.
Liebigs
Ann.
1995,
10:
1823
18 The ratio of 14 to 15 did not vary significantly upon prolonged
reaction times indicating that under the reaction conditions, equilibration
of the diamine 15 to benzamidine 3 and eventually to product 14 did
not occur.
It is very likely that the quenched
reaction mixtures still retain some oxidizing potential and should
be disposed of appropriately to avoid hazardous decompositions.
It has been reported for example that oxone® will
lose active oxygen slowly under alkaline conditions, see:
19a
Kennedy RJ.
Stock AM.
J.
Org. Chem.
1960,
25:
1901
19b
Ball DL.
Edwards JO.
J.
Am. Chem. Soc.
1956,
78:
1125
20a
Chang J.
Zhao K.
Pan S.
Tetrahedron Lett.
2002,
43:
951 ; and references cited therein
20b
Hari A.
Karan C.
Rodrigues WC.
Miller BL.
J. Org. Chem.
2001,
66:
991