Abstract
Two alternative reaction conditions developed for allyltrimethoxysilane addition
to N -benzoylhydrazones enable efficient and versatile access to homoallylic α-branched
amines. Aldehyde hydrazones, both aromatic and aliphatic, and ketone hydrazones all
give good yields. One set of conditions employs catalytic amounts of CuCl and tetrabutylammonium
triphenyldifluorosilicate (TBAT); improved yields and reaction times are obtained
at 80 °C in the presence of bis(diphenylphosphino)ethane (dppe) and t -BuOH as additives. The second set of conditions employs 20 mol% TBAT as a fluoride
source in a metal-free catalytic system; here t -BuOH offers only modest improvement, and ambient temperatures are optimal. For example,
under this second set of conditions, the N -benzoylhydrazone from ethyl pyruvate affords the homoallylic tert -alkyl amine adduct in 78% yield.
Key words
addition reactions - allylation - catalysis - hydrazones - silicon
References
Reviews of allyl organometallic addition to C=N bonds:
<A NAME="RC04304SS-1A">1a </A>
Kobayashi S.
Ishitani H.
Chem. Rev.
1999,
99:
1069
<A NAME="RC04304SS-1B">1b </A>
Bloch R.
Chem. Rev.
1998,
98:
1407
<A NAME="RC04304SS-1C">1c </A>
Enders D.
Reinhold U.
Tetrahedron: Asymmetry
1997,
8:
1895
<A NAME="RC04304SS-1D">1d </A>
Denmark SE.
Nicaise OJ.-C.
J. Chem. Soc., Chem. Commun.
1996,
999
<A NAME="RC04304SS-1E">1e </A>
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
<A NAME="RC04304SS-1F">1f </A>
Kleinman EF.
Volkmann RA. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon;
New York:
1991.
p.975
<A NAME="RC04304SS-2A">2a </A>
Fang X.
Johannsen M.
Yao S.
Gathergood N.
Hazell RG.
Jorgensen KA.
J. Org. Chem.
1999,
64:
4844
<A NAME="RC04304SS-2B">2b </A>
Wang D.-K.
Zhou Y.-G.
Tang Y.
Hou X.-L.
Dai L.-X.
J. Org. Chem.
1999,
64:
4233
<A NAME="RC04304SS-2C">2c </A>
Pilcher AS.
DeShong P.
J. Org. Chem.
1996,
61:
6901
<A NAME="RC04304SS-2D">2d </A>
Kobayashi S.
Hirabayashi R.
J. Am. Chem. Soc.
1999,
121:
6942
<A NAME="RC04304SS-2E">2e </A>
Hirabayashi R.
Ogawa C.
Sugiura M.
Kobayashi S.
J. Am. Chem. Soc.
2001,
123:
9493
<A NAME="RC04304SS-3">3 </A>
Friestad GK.
Ding H.
Angew. Chem. Int. Ed.
2001,
40:
4491
<A NAME="RC04304SS-4">4 </A>
Kobayashi S.
Ogawa C.
Konishi H.
Sugiura M.
J. Am. Chem. Soc.
2003,
125:
6610
<A NAME="RC04304SS-5A">5a </A>
Berger R.
Rabbat PMA.
Leighton JL.
J. Am. Chem. Soc.
2003,
125:
9596
<A NAME="RC04304SS-5B">5b </A>
Berger R.
Duff K.
Leighton JL.
J. Am. Chem. Soc.
2004,
126:
5686
<A NAME="RC04304SS-6">6 </A>
Yamasaki S.
Fujii K.
Wada R.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
2002,
124:
6536
<A NAME="RC04304SS-7">7 </A>
Hamada T.
Manabe K.
Kobayashi S.
Angew. Chem. Int. Ed.
2003,
42:
3927
<A NAME="RC04304SS-8A">8a </A>
Fernandes RA.
Yamamoto Y.
J. Org. Chem.
2004,
69:
735
<A NAME="RC04304SS-8B">8b </A>
Fernandes RA.
Stimac A.
Yamamoto Y.
J. Am. Chem. Soc.
2003,
125:
14133
<A NAME="RC04304SS-9">9 </A>
In combination with t -BuOH as proton source, the yield with t -BuBOX improved to 51%, but the enantioselectivity decreased to only 1.8% ee.
<A NAME="RC04304SS-10A">10a </A>
Some control experiments were examined in order to obtain evidence about the roles
of the reagents. First, hydrazone 1 was mixed with the CuCl and t -BuBOX ligand for 2 h, followed by addition of a mixture of allyltrimethoxysilane
and TBAT; no reaction occurred. Under conditions otherwise identical to the first
control experiment, additional CuCl was included in the silane mixture; still there
was no reaction. On the other hand, including both CuCl and dppe in the silane mixture
restored the reactivity, affording 2 in 67% yield. These experiments suggest that the main role of CuCl is in generating
the active nucleophilic species, not as a Lewis acid activator of the benzoylhydrazone.
The phosphine may serve as a stabilizing ligand within a Cu-containing allyl nucleophile;
the exact identity of this nucleophile is unclear. Shibasaki has suggested an allylcopper
or an allylsilicate-Cu+ ion pair (ref.6 ).
<A NAME="RC04304SS-10B">10b </A>
The hydrazone N-H was changed to N-Me; benzaldehyde N -methyl-N -benzoylhydrazone gave no reaction, suggesting that deprotonation of the hydrazone
N-H, or its involvement in a hydrogen bond, may be essential to the mechanism. Leighton
has observed a similar requirement for the N-H bond (see ref.5b ).
<A NAME="RC04304SS-11">11 </A> The availability of the Cu-free achiral pathway may contribute to the low enantioselectivity
found in reactions employing chiral ligands. For related observations in Cu(II)-catalyzed
Mannich-type additions to iminophosphonates, see:
Kobayashi S.
Kiyohara H.
Nakamura Y.
Matsubara R.
J. Am. Chem. Soc.
2004,
126:
6558
<A NAME="RC04304SS-12">12 </A> Mechanisms of metal-free reactions involving fluoride activation are distinctly
different from those in the presence of Cd(II) or Ag(I), where evidence for regeneration
of a metal fluoride by Si-F cleavage has been presented:
Aoyama N.
Hamada T.
Manabe K.
Kobayashi S.
J. Org. Chem.
2003,
68:
7329
Reviews of nucleophilic activation of allylsilanes:
<A NAME="RC04304SS-13A">13a </A>
Chuit CC.
Corriu RJP.
Reye C.
Young JC.
Chem. Rev.
1993,
93:
1371
<A NAME="RC04304SS-13B">13b </A>
Kennedy JWJ.
Hall DG.
Angew. Chem. Int. Ed.
2003,
42:
4732
<A NAME="RC04304SS-14">14 </A>
Proton transfer would convert 8 to a more stable amide anion, which could react with allyltrimethoxysilane at the
amide oxygen. This O -silylation pathway for the autocatalysis is consistent with the complete absence
of reactivity when the proton transfer is blocked by N -methylation (see ref.10b ).
<A NAME="RC04304SS-15">15 </A>
Wu P.-L.
Peng S.-Y.
Magrath J.
Synthesis
1995,
435
<A NAME="RC04304SS-16">16 </A>
Aly MF.
Grigg R.
Tetrahedron
1988,
44:
7271
<A NAME="RC04304SS-17">17 </A>
Palla G.
Predieri G.
Domino P.
Tetrahedron
1986,
42:
3649
<A NAME="RC04304SS-18">18 </A>
Aggarwal JS.
Darbari NL.
Ray JN.
J. Chem. Soc.
1929,
1941
<A NAME="RC04304SS-19">19 </A>
Agarwal SK.
Gupta R.
Kumar D.
Pol. J. Chem.
1989,
63:
329
<A NAME="RC04304SS-20">20 </A>
Walker CC.
Schechter H.
J. Am. Chem. Soc.
1968,
90:
5626
<A NAME="RC04304SS-21">21 </A>
Hegarty A.
Kearney JA.
Cashell PA.
Scott FL.
J. Chem. Soc., Perkin Trans. 2
1976,
242
<A NAME="RC04304SS-22">22 </A>
Abdel-Rahman RM.
El-Gendy Z.
Fawzy MM.
Mahmoud MB.
J. Indian Chem. Soc.
1991,
68:
628
<A NAME="RC04304SS-23">23 </A>
Curtius T.
Struve G.
J. Prakt. Chem.
1894,
50:
295