Synthesis 2005(14): 2271-2280  
DOI: 10.1055/s-2005-872107
REVIEW
© Georg Thieme Verlag Stuttgart · New York

Organolithiums in Enantioselective Additions to π* and σ* Carbon-Oxygen Electrophiles

Bernd Goldfuss*
Universität zu Köln, Institut für Organische Chemie, Greinstrasse 4, 50939 Köln, Germany
Fax: +49(221)4705057; e-Mail: Goldfuss@uni-koeln.de;
Further Information

Publication History

Received 28 February 2005
Publication Date:
29 July 2005 (eFirst)

Abstract

Mediated by chiral, non-racemic ligands, organolithiums add enantioselectively to C=O functions of carbonyl compounds (aldehydes and ketones) or cleave enantioselectively C-O units in strained ethers (epoxides and oxetanes) as well as in acetals. The achievement of high enantioselectivities is desirable and hence factors controlling these enantioselectivities are the subject of intensive research. Beneficial external influences on enantioselectivity are low temperatures, suitable solvents (e.g. dimethoxymethane, dimethyl ether) and the exclusion of salt impurities. Organolithium reagents and ligands lithiated in situ form mixed anionic aggregates, some of which can be isolated and even structurally studied. The improved understanding of the nature of such chiral organolithium aggregates provides the way to a more rational design of new enantioselective organolithium reagents.

1 Introduction

2 Additions to Aldehydes

3 Additions to Ketones

4 Additions to Epoxides and Oxetanes

5 Additions to Acetals

6 Conclusions

    References

  • For previous reviews, see:
  • 1a Goldfuss B. Enantio­-selective Addition of Organolithiums to C=O Groups and Ethers, In Organolithiums in Enantioselective Synthesis   Hodgson DM. Springer; Heidelberg: 2003.  Topics in Organometallic Chemistry, Vol. 5: 21
  • 1b Clayden J.; Organolithiums: Selectivity for Synthesis   Pergamon Press; Amsterdam: 2002. 
  • 1c Corey EJ. Cheng XM. The Logic of Chemical Synthesis   Wiley; New York: 1995. 
  • 1d Huryn DM. In Comprehensive Organic Synthesis   Vol. 1:  Trost BM. Fleming I. Pergamon Press; Amsterdam: 1991.  p.49 
  • For quantitative assessments of nucleophilicity, see:
  • 2a Kempf B. Hampel N. Ofial AR. Mayr H. Chem. Eur. J.  2003,  9:  2209 
  • 2b Minegishi S. Mayr H. J. Am. Chem. Soc.  2003,  125:  286 
  • 2c Mayr H. Kempf B. Ofial AR. Acc. Chem. Res.  2003,  36:  66 
  • 2d Mayr H. Patz M. Gotta MF. Ofial AR. Pure Appl. Chem.  1998,  70:  1993 
  • 3a Lithium Chemistry   Sapse A.-M. Schleyer PvR. Wiley; New York: 1995. 
  • 3b Lambert C. Schleyer PvR. Angew. Chem., Int. Ed. Engl.  1994,  33:  1129 ; Angew. Chem. 1994, 106, 1187
  • 3c Lambert C. Schleyer PvR. In Methoden der organischen Chemie (Houben-Weyl)   4th ed., Vol. E19d:  Thieme; Stuttgart: 1993.  p.1 
  • 3d Bauer W. Schleyer PvR. In Advances in Carbanion Chemistry   Vol. 1:  Snieckus V. Jai Press; Greenwich: 1992. 
  • 4a Berrisford DJ. Bolm C. Sharpless KB. Angew. Chem., Int. Ed. Engl.  1995,  34:  1059 ; Angew. Chem. 1995, 107, 1159
  • 4b Noyori R. Kitamura M. Angew. Chem., Int. Ed. Engl.  1991,  30:  49 ; Angew. Chem. 1991, 103, 34
  • 5 Cohen HL. Wright GF. J. Org. Chem.  1953,  18:  432 
  • 6a Allentoff N. Wright GF. J. Org. Chem.  1957,  22:  1 
  • 6b French W. Wright GF. Can. J. Chem.  1964,  42:  2474 
  • 7 Iffland DC. Davis JE. J. Org. Chem.  1977,  42:  4150 
  • 8a Basu A. Thayumanavan S. Angew. Chem., Int. Ed. Engl.  2002,  43:  716 ; Angew. Chem. 2002, 114, 740
  • 8b Goldfuss B. Nachr. Chem.  2001,  49:  1333 
  • 8c Hoppe D. Hense T. Angew. Chem., Int. Ed. Engl.  1997,  36:  2282 ; Angew. Chem. 1997, 109, 2376
  • 9a Noyori R. Suga S. Kawai K. Okada S. Kitamura M. Pure Appl. Chem.  1988,  60:  1597 
  • 9b Tomioka K. Synthesis  1990,  541 
  • 9c Noyori R. Asymmetric catalysis in organic synthesis   Wiley; New York: 1994. 
  • 10 Juaristi E. Beck AK. Hansen J. Matt T. Mukhopadhyay T. Simson M. Seebach D. Synthesis  1993,  1271.  Catalytic variants of aldol-type reactions are also possible with chiral Lewis acids or organocatalytic with proline
  • 11a Nozaki H. Aratani T. Toraya T. Tetrahedron Lett.  1968,  38:  4097 
  • 11b Nozaki H. Aratani T. Toraya T. Noyori R. Tetrahedron  1971,  27:  905 
  • 12 Seebach D. Dörr H. Bastani B. Ehrig V. Angew. Chem., Int. Ed. Engl.  1969,  8:  982 ; Angew. Chem. 1969, 81, 1002
  • 13a Seebach D. Kalinowski H.-O. Bastani B. Crass G. Daum H. Dörr H. DuPreez NP. Ehrig V. Langer W. Nüssler C. Oei H.-A. Schmidt M. Helv. Chim. Acta  1977,  60:  301 
  • 13b Seebach D. Oei H.-A. Daum H. Chem. Ber.  1977,  110:  2316 
  • 13c Seebach D. Langer W. Helv. Chim. Acta  1979,  62:  1701 
  • 13d Seebach D. Langer W. Helv. Chim. Acta  1979,  62:  1710 
  • 14 Seebach D. Crass G. Wilka E.-M. Hilvert D. Brunner E. Helv. Chim. Acta  1979,  62:  2695 
  • 15 Mukaiyama T. Soai K. Kobayashi S. Chem. Lett.  1978,  219 
  • 16a Soai K. Mukaiyama T. Chem. Lett.  1978,  491 
  • 16b Mukaiyama T. Soai K. Sato T. Shimizu H. Suzuki K. J. Am. Chem. Soc.  1979,  101:  1455 
  • 17 Mukaiyama T. Suzuki K. Chem. Lett.  1980,  255 
  • 18 Johnson WS. Frei B. Gopalan AS. J. Org. Chem.  1981,  46:  1512 
  • 19 Mazaleyrat J.-P. Cram DJ. J. Am. Chem. Soc.  1981,  103:  4585 
  • 20 Eleveld MB. Hogeveen H. Tetrahedron Lett.  1984,  25:  5187 
  • 21 Arvidsson PI. Hilmersson G. Davidsson . Chem. Eur. J.  1999,  5:  2348 
  • 22 Whitesell JK. Jaw B.-R. J. Org. Chem.  1981,  46:  2798 
  • 23 Colombo L. Gennari C. Poli G. Scolastico C. Tetrahedron  1982,  38:  2725 
  • 24 Alberts AH. Wynberg H. J. Am. Chem. Soc.  1989,  111:  7265 
  • 25 For an early report on the role of mixed aggregates, see: Seebach D. Amstutz R. Dunitz JD. Helv. Chim. Acta  1981,  64:  2622 
  • 26 Ye M. Logaraij S. Jackman LM. Hillegass K. Hirsh KA. Bollinger AM. Grosz AL. Tetrahedron  1994,  50:  6109 
  • 27 Kang J. Kim JI. Lee JH. Bull. Korean Chem. Soc.  1994,  15:  865 
  • 28 Enantioselective protonation and alkylation with mixed aggregates of chiral 3-aminopyrrolidine lithium amides: Flinois K. Yuan Y. Bastide C. Harrison-Marchand A. Maddaluno J. Tetrahedron  2002,  58:  4707 
  • 29 Corruble A. Valnot J.-Y. Maddaluno J. Duhamel P. Tetrahedron: Asymmetry  1997,  8:  1519 
  • 30a Corruble A. Valnot J.-Y. Maddaluno J. Duhamel P. J. Org. Chem.  1998,  63:  8266 
  • 30b For a more recent computational and experimental study, see: Corruble A. Davoust D. Desjardins S. Fressigne C. Giessner-Prettre C. Harrison-Marchand A. Houte H. Lasne M.-C. Maddaluno J. Oulyadi H. Valnot J.-Y. J. Am. Chem. Soc.  2002,  124:  15267 
  • 31 Schön M. Naef R. Tetrahedron: Asymmetry  1999,  10:  169 
  • 32 Knollmüller M. Ferencic M. Gärtner P. Tetrahedron: Asymmetry  1999,  10:  3969 
  • 33 Aspinall HC. Dwyer JLM. Greeves N. Steiner A. Organometallics  1999,  18:  1366 
  • 34 Review on RLi/ROM aggregates: Lochmann L. Eur. J. Inorg. Chem.  2000,  1115 
  • 35 McGarrity JF. Ogle CA. Brich Z. Loosli H.-R. J. Am. Chem. Soc.  1985,  107:  1810 
  • 36a Snieckus V. Chem. Rev.  1990,  90:  879 
  • 36b Hommes NJRvE. Schleyer PvR. Tetrahedron  1994,  50:  5903 
  • 36c Hommes NJRvE. Schleyer PvR. Angew. Chem., Int. Ed. Engl.  1992,  31:  755 ; Angew. Chem. 1992, 104, 768
  • 36d Goldfuss B. Schleyer PvR. Handschuh S. Hampel F. J. Organomet. Chem.  1998,  552:  285 
  • 37 Activation via deaggregation of organolithiums by coordinating solvents (THF) or ligands (TMEDA) is frequently used in lithiations of hydrocarbons: Brandsma L. Verkruijsse H. Preparative Polar Organometallic Chemistry   Springer; Heidelberg: 1987. 
  • 38a Streitwieser A. Wang DZ.-R. J. Am. Chem. Soc.  1999,  121:  6213 
  • 38b Wang DZ. Kim Y.-J. Streitwieser A. J. Am. Chem. Soc.  2000,  122:  10754 
  • 39a Novak DP. Brown TL. J. Am. Chem. Soc.  1972,  94:  3793 
  • 39b Kieft RL. Novak DP. Brown TL. J. Organomet. Chem.  1974,  77:  299 
  • 39c Eppers O. Günther H. Helv. Chim. Acta  1990,  73:  207 
  • 40 Seebach D. Angew. Chem., Int. Ed. Engl.  1988,  27:  1624 ; Angew. Chem. 1988, 100, 1685
  • 41a Weidemann B. Seebach D. Angew. Chem., Int. Ed. Engl.  1983,  22:  40 ; Angew. Chem. 1983, 95, 12
  • 41b Pu L. Hong-Bin Y. Chem. Rev.  2001,  101:  757 
  • 41c Seebach D. Beck AK. Imwinkelried R. Roggo S. Wonnacott A. Helv. Chim. Acta  1987,  70:  954 
  • 41d Bolm C. Hildebrand JP. Muniz K. Hermanns N. Angew. Chem., Int. Ed. Engl.  2001,  40:  3284 ; Angew. Chem. 2001, 113, 3383
  • 41e Weber B. Seebach D. Angew. Chem., Int. Ed. Engl.  1992,  31:  84 ; Angew. Chem. 1992, 104, 96
  • 41f Weber B. Seebach D. Tetrahedron  1994,  50:  6117 
  • Computational analyses:
  • 41g Rudolph J. Rasmussen T. Bolm C. Norrby P.-O. Angew. Chem., Int. Ed. Engl.  2003,  42:  3002 ; Angew. Chem. 2003, 115, 3110
  • 41h Goldfuss B. Steigelmann M. Rominger F. Eur. J. Org. Chem.  2000,  1785 
  • 41i Goldfuss B. Steigelmann M. J. Mol. Model.  2000,  6:  166 
  • 41j Goldfuss B. Steigelmann M. Khan SI. Houk KN. J. Org. Chem.  2000,  65:  77 
  • 42 Armstrong DR. Davies RP. Raithby PR. Snaith R. Wheatley AEH. New J. Chem.  1999,  23:  499 
  • 43 Hilmersson G. Davidsson O. J. Organomet. Chem.  1995,  489:  175 
  • 44 Arvidsson PI. Ahlberg P. Hilmersson G. Chem. Eur. J.  1999,  5:  1348 
  • 45 Arvidsson PI. Davidsson . Hilmersson G. Tetrahedron: Asymmetry  1999,  10:  527 
  • 46a Granander J. Sott R. Hilmersson G. Tetrahedron  2002,  58:  4717 
  • More recently analogue mixed lithioacetonitrile aggregates were studies by 6Li, 15N and 13C couplings:
  • 46b Sott R. Granander J. Hilmersson G. J. Am. Chem. Soc.  2004,  126:  6798 
  • 46c Sott R. Granander J. Hilmersson G. Chem. Eur. J.  2002,  8:  2081 
  • 47 For recent studies on enantiopure and racemic lithio dimethylaminomethyl benzenes, see: Kronenburg CMP. Rijnberg E. Jastrzebski JTBH. Kooijman H. Spek AL. Koten Gv. Eur. J. Org. Chem.  2004,  153 
  • 48 Williard PG. Sun C. J. Am. Chem. Soc.  1997,  119:  11693 
  • 49 Hilmersson G. Malmros B. Chem. Eur. J.  2001,  7:  331 
  • For catalysts based on modular fenchols, see:
  • 50a Steigelmann M. Nisar Y. Rominger F. Goldfuss B. Chem. Eur. J.  2002,  8:  5211 
  • 50b Goldfuss B. Löschmann T. Rominger F. Chem. Eur. J.  2004,  10:  5422 
  • 51a Goldfuss B. Khan SI. Houk KN. Organometallics  1999,  18:  2927 
  • 51b Goldfuss B. Steigelmann M. Rominger F. Angew. Chem. Int. Ed.  2000,  39:  4133 ; Angew. Chem. 2000, 112, 4299
  • 51c Goldfuss B. Steigelmann M. Rominger F. Urtel H. Chem. Eur. J.  2001,  7:  4456 
  • 51d

    Goldfuss, B.; Steigelmann, M.; Rominger, F.; hitherto unpublished results.

  • 52 Kottke T. Stalke D. Angew. Chem., Int. Ed. Engl.  1993,  32:  580 ; Angew. Chem. 1993, 105, 619
  • 53 While the 3:1 stoichiometry of this lithium butylide phenyl fencholate is analoguous to its anisol derivative, the lack of methoxy groups gives rise to different butylide encapsulation: Goldfuss B. Steigelmann M. Löschmann T. Schilling G. Rominger F. Chem. Eur. J.  2005,  11:  4019 
  • 54 Briggs TF. Winemiller MD. Xiang B. Collum DB. J. Org. Chem.  2001,  66:  6291 
  • 55 Sun X. Winemiller MD. Xiang B. Collum DB. J. Am. Chem. Soc.  2001,  123:  8039 
  • 56 Jiang B. Feng Y. Tetrahedron Lett.  2002,  43:  2975 
  • 57a Tzalis D. Knochel P. Angew. Chem., Int. Ed. Engl.  1999,  38:  1463 ; Angew. Chem. 1999, 111, 1547
  • 57b Frantz DE. Fässler R. Carreira E. J. Am. Chem. Soc.  2000,  122:  1806 
  • 58 Corey EJ. Guzman-Perez A. Angew. Chem. Int. Ed.  1998,  37:  388 ; Angew. Chem. 1998, 110, 402
  • 59a Organometallics in Synthesis   Schlosser M. Wiley; New York: 2002.  p.1 
  • 59b Wakefield BJ. In The Chemistry of Organolithium Compounds   Pergamon Press; Oxford: 1974.  p.129 
  • 60a Thompson A. Corley EG. Huntington MF. Grabowski EJJ. Remenar JF. Collum DB. J. Am. Chem. Soc.  1998,  120:  2028 
  • 60b Pierce ME. Parsons RL. Radesca LA. Lo YS. Silverman S. Moore JR. Islam Q. Choudhury A. Fortunak JMD. Nguyen D. Luo C. Morgan SJ. Davis WP. Confalone PN. Chen C.-Y. Tillyer RD. Frey L. Tan L. Xu F. Zhao D. Thompson AS. Corley EG. Grabowski EJJ. Reamer R. Reider PJ. J. Org. Chem.  1998,  63:  8536 
  • For recent studies on lithium acetylide additions to quinazolinones, see:
  • 60c Briggs TF. Winemiller MD. Collum DB. Parson RL. Davulcu AH. Harris GD. Fortunak JM. Confalone PN. J. Am. Chem. Soc.  2004,  126:  5427 
  • 61 Choudhury A. Moore JR. Pierce ME. Fortunak JM. Valvis I. Confalone PN. Org. Process Res. Dev.  2003,  7:  324 
  • 62 Thompson AS. Corley EG. Huntington MF. Grabowski EJJ. Tetrahedron Lett.  1995,  36:  8937 
  • 63a Huffman MA. Yasuda N. DeCamp AE. Grabowski EJJ. J. Org. Chem.  1995,  60:  1590 
  • 63b Parsons RL. Fortunak JM. Dorow RL. Harris GD. Kauffman GS. Nugent WA. Winemiller MD. Briggs TF. Xiang B. Collum DB. J. Am. Chem. Soc.  2001,  123:  9135 
  • 63c Rutherford JL. Hoffmann D. Collum DB. J. Am. Chem. Soc.  2002,  124:  264 
  • 64 Lucht BL. Collum DB. J. Am. Chem. Soc.  1994,  116:  7949 
  • 65 Xu F. Reamer RA. Tillyer R. Cummins JM. Grabowski EJJ. Reider PJ. Collum DB. Huffman JC. J. Am. Chem. Soc.  2000,  122:  11212 
  • 66a Ramon JD. Yus M. Tetrahedron Lett.  1998,  39:  1239 
  • 66b Dosa PI. Fu GC. J. Am. Chem. Soc.  1998,  120:  445 
  • 67 Tan L. Chen C.-Y. Tillyer RD. Grabowski EJJ. Reider PJ. Angew. Chem. Int. Ed.  1999,  38:  711 ; Angew. Chem. 1999, 111, 724
  • 68 For a computational study, see: Banks HD. J. Org. Chem.  2003,  68:  2639 
  • 69 Lewis Acids in Organic Synthesis   Yamamoto H. Wiley-VCH; Weinheim: 2000. 
  • 70 Schneider C. Brauner J. Eur. J. Org. Chem.  2001,  4445 
  • 71 Yamaguchi M. Hirao I. Tetrahedron Lett.  1983,  24:  391 
  • 72 Hodgson DM. Gibbs AR. Lee GP. Tetrahedron  1996,  52:  14361 
  • 73a Mizuno M. Kanai M. Iida A. Tomioka K. Tetrahedron: Asymmetry  1996,  7:  2483 
  • 73b Mizuno M. Kanai M. Iida A. Tomioka K. Tetrahedron  1997,  53:  19699 
  • 74 Alexakis A. Vrancken E. Mangeney P. Synlett  1998,  1165 
  • 75 Alexakis A. Vrancken E. Mangeney P. J. Chem. Soc., Perkin Trans. 1  2000,  3354 
  • 76 Oguni N. Miyagi Y. Itoh K. Tetrahedron Lett.  1998,  39:  9023 
  • 77a Seebach D. Imwinkelried R. Weber T. In Modern Synthetic Methods   Vol. 4:  Scheffold R. Springer; Heidelberg: 1986.  p.125 
  • 77b Alexakis A. Mhamdi F. Lagasse F. Mangeney P. Tetrahedron: Asymmetry  1996,  7:  3343 
  • For oxazaborolidinone-mediated enantioselective ring-cleavage of acetals with weaker nucleophiles, see:
  • 78a Harada T. Egusa T. Igarashi Y. Kinugasa M. Oku A. J. Org. Chem.  2002,  67:  7080 
  • 78b Harada T. Imai K. Oku A. Synlett  2002,  972 
  • 79a Kinugasa M. Harada T. Oku A. J. Org. Chem.  1996,  61:  6772 
  • 79b Kinugasa M. Harada T. Oku A. Tetrahedron Lett.  1998,  39:  4529 
  • 80 Müller P. Nury P. Org. Lett.  2000,  2:  2845 
  • 81 Müller P. Nury P. Bernardinelli G. Eur. J. Org. Chem.  2001,  4137 
  • 82 For recent accounts on enantioselective organolithium bases, see for example Ref. 8c, and contributions in Organolithiums in Enantioselective Synthesis, Topics in Organometallic Chemistry, Vol. 5   Hodgson DM. Springer; Heidelberg: 2003.