Abstract
The last century has seen the isolation and synthesis of a multitude of molecules
with remarkable biological activity. Some of them represent milestones in chemical
space and points of reference in the various disciplines of chemical synthesis, medicine,
and biology that they beneficially impact. The notable history of natural products
as antibiotics dates back to the 18th century. They continue to play an indispensable role in the advances that have been
seen in the quality of life for the general population. This has come about because
of the rich dialog that can be found at the interfaces between chemistry, biochemistry,
biology, and medicine. In this review we examine amphotericin B as an important representative
of antibiotics with a long rich history. Its impact continues to be felt today in
its use in the clinic to combat fungal infections. In the first part, we review the
biochemical efforts aimed at the explanation of amphotericin B’s mechanisms of action;
in the second part, we take a look at the impact amphotericin B has had on the chemical
community in the last two decades. The continuous interest aroused by amphotericin
B reveals how much we still do not know about this space.
-
1 Introduction
-
2 Amphotericin B from Isolation to Structure-Activity Relationship Studies
-
2.1 Amphotericin B in the Context of Antibiotic Research
-
2.2 Studies on Amphotericin B
-
2.2.1 Structure of Amphotericin B
-
2.2.2 Mechanism of Action of Amphotericin B
-
2.2.3 Structure-Activity Relationship Studies, Part I
-
2.2.4 Degradation Studies
-
2.2.5 Structure-Activity Relationship Studies, Part II
-
2.2.6 Biosynthesis of Deoxyamphotericins
-
3 Studies toward the Total Synthesis of Amphotericin B
-
3.1 Synthesis of Macrolides at the Beginning of the 1980s
-
3.1.1 Macrocyclization Reactions
-
3.1.2 Addressing the Stereochemistry of Complex Molecules
-
3.2 Synthetic Studies on Amphotericin B
-
3.2.1 Retrosynthetic Analysis
-
3.2.2 Synthetic Studies on the B1 and B2 Fragments
-
3.2.3 Synthetic Studies on the B3 Fragment
-
3.2.4 Synthetic Studies on the A2 Fragment
-
3.2.5 Synthesis of the B Fragment (B1B2 + B3)
-
3.2.6 Synthesis of the A Fragment (A2 + Polyene)
-
3.2.7 Assembly of the A and B Fragments and Glycosidation
-
4 Conclusion
Key words
amphotericin B - antifungal agents - macrolides - asymmetric synthesis - bioorganic
chemistry
References
<A NAME="RE15406SS-1">1</A>
Strohl WR. In Biotechnology of Antibiotics
Strohl WR.
Marcel Dekker Inc.;
New York/Basel:
1997.
p.1-47
<A NAME="RE15406SS-2">2</A>
Walsh CT.
Wright G.
Chem. Rev.
2005,
105:
391
<A NAME="RE15406SS-3">3</A>
This somewhat-unfortunate name indicates an ‘n-dimen-sional space defined by the value
of n descriptors; these descriptors can be of a chemical or biological nature and
are either computed or measured’ (see ref. 6c). It seems more appropriate to call
this abstract space a QSAR- or QSPR-space where QSAR and QSPR are the more familiar
(and general) acronyms for ‘quantitative structure-activity relationship’ and ‘quantitative
structure-property relation-ship’, respectively (see ref. 56).
<A NAME="RE15406SS-4A">4a</A>
Lo MM.-C.
Neumann CS.
Nagayama S.
Perlstein EO.
Schreiber SL.
J. Am. Chem. Soc.
2004,
126:
16077
<A NAME="RE15406SS-4B">4b</A>
Ramon DJ.
Yus M.
Angew. Chem. Int. Ed.
2005,
44:
1602
<A NAME="RE15406SS-5A">5a</A>
Li X.
Liu DR.
Angew. Chem. Int. Ed.
2004,
43:
4848
<A NAME="RE15406SS-5B">5b</A>
Gartner ZJ.
Tse BN.
Grubina R.
Doyon JB.
Snyder TM.
Liu DR.
Science
2004,
305:
1601
<A NAME="RE15406SS-5C">5c</A>
Halpin DR.
Harbury PB.
PLoS Biol.
2004,
2:
1015
<A NAME="RE15406SS-5D">5d</A>
Halpin DR.
Harbury PB.
PLoS Biol.
2004,
2:
1022
<A NAME="RE15406SS-5E">5e</A>
Halpin DR.
Lee JA.
Wrenn SJ.
Harbury PB.
PLoS Biol.
2004,
2:
1031
<A NAME="RE15406SS-6A">6a</A>
Schreiber SL.
Science
2000,
287:
1964
<A NAME="RE15406SS-6B">6b</A>
Strausberg RL.
Schreiber SL.
Science
2003,
300:
294
<A NAME="RE15406SS-6C">6c</A>
Burke MD.
Schreiber SL.
Angew. Chem. Int. Ed.
2004,
43:
46
<A NAME="RE15406SS-7">7</A>
Corey EJ.
Cheng X.-M.
The Logic of Chemical Synthesis
Wiley;
New York:
1989.
<A NAME="RE15406SS-8A">8a</A>
Cane DE.
Walsh CT.
Khosla C.
Science
1998,
282:
63
<A NAME="RE15406SS-8B">8b</A>
Reeves CD.
Crit. Rev. Biotech.
2003,
23:
95
<A NAME="RE15406SS-8C">8c</A>
Hopwood DA.
PLoS Biology
2004,
2:
166
<A NAME="RE15406SS-9">9</A>
Hopwood DA.
Malpartida F.
Kieser HM.
Ikeda H.
Duncan J.
Fujii I.
Rudd BAM.
Floss HG.
Omura S.
Nature
1985,
314:
642
<A NAME="RE15406SS-10">10</A>
McDaniel R.
Ebert-Khosla S.
Hopwood DA.
Khosla C.
Science
1993,
262:
1546
<A NAME="RE15406SS-11">11</A>
Rosamond J.
Allsop A.
Science
2000,
287:
1973
<A NAME="RE15406SS-12A">12a</A>
Brown ED.
Wright GD.
Chem. Rev.
2005,
105:
759
<A NAME="RE15406SS-12B">12b</A>
Desnottes J.-F.
Trends Biotechnol.
1996,
14:
134
<A NAME="RE15406SS-13A">13a</A>
Schena M.
Shalon D.
Davis RW.
Brown PO.
Science
1995,
270:
467
<A NAME="RE15406SS-13B">13b</A>
DeRisi JL.
Iyer VR.
Brown PO.
Science
1997,
278:
680
<A NAME="RE15406SS-14">14</A>
Marton MJ.
DeRisi JL.
Bennett HA.
Iyer VR.
Meyer MR.
Roberts CJ.
Stoughton R.
Burchard J.
Slade D.
Dai H.
Bassett DE.
Hartwell LH.
Brown PO.
Friend SH.
Nat. Med.
1998,
4:
1293
For the strain isolation:
<A NAME="RE15406SS-15A">15a</A>
Sternberg TH.
Wright ET.
Oura M.
Antibiot. Annu.
1956,
566
<A NAME="RE15406SS-15B">15b</A>
Sternberg TH.
Jambor WP.
Suydam LO.
Antibiot. Annu.
1956,
574
<A NAME="RE15406SS-15C">15c</A>
Gold W.
Stout HA.
Pagano JF.
Donovik R.
Antibiot. Annu.
1956,
579
<A NAME="RE15406SS-15D">15d</A>
Vandeputte J.
Wachtel JL.
Stiller ET.
Antibiot. Annu.
1956,
587
For amphotericin B isolation:
<A NAME="RE15406SS-15E">15e</A>
Dutcher JD,
Gold W,
Pagano JF, and
Vandepatte J. inventors; US Patent 2908611.
See also:
<A NAME="RE15406SS-15F">15f</A>
Lemke A.
Kiderlen AF.
Kayser O.
Appl. Microbiol. Biotechnol.
2005,
68:
151
<A NAME="RE15406SS-16">16</A>
Challis GL.
Hopwood DA.
Proc. Natl. Acad. Sci. U.S.A.
2003,
100:
14555
<A NAME="RE15406SS-17">17</A>
Trejo W.
Bennett R.
J. Bacteriol.
1962,
85:
436 ; It is worth reminding that the ability to biosynthesize a certain antibiotic
is characteristic not of microbial genera, not even of species, but of strains or
races within a given species. Trejo and Bennet first officially characterized S. nodosus according to the International Code of Nomenclature of Bacteria and Viruses, thus
providing the full name Streptomyces nodosus Trejo (= M 4575 = ATCC 14899)
<A NAME="RE15406SS-18">18</A>
Macrolide Antibiotics, Chemistry, Biology and Practice
Omura S.
Academic Press;
New York:
1984.
p.2002
<A NAME="RE15406SS-19">19</A>
Amphotericin A is biosynthesized along with amphotericin B and needs to be removed
from the latter during purification.
<A NAME="RE15406SS-20A">20a</A>
Hazen EL.
Brown R.
Science
1950,
112:
423
<A NAME="RE15406SS-20B">20b</A>
Brown R.
Hazen EL.
Mason A.
Science
1953,
117:
609
<A NAME="RE15406SS-21A">21a</A>
Ng AWK.
Wasan KM.
Lopez-Berestein G.
J. Pharm. Pharmaceut. Sci.
2003,
6:
67
<A NAME="RE15406SS-21B">21b</A>
Hartsel S.
Bolard J.
Trends Pharmacol. Sci.
1996,
17:
445
<A NAME="RE15406SS-22">22</A>
Hay RJ. In Recent Advances in the Chemistry of Anti-infective Agents
Bentley PH.
Ponsdorf R.
Royal Society of Chemistry;
Cambridge (UK):
1993.
p.163-181
<A NAME="RE15406SS-23">23</A>
Ellis D.
J. Antimicrob. Chemother.
2002,
49 Suppl. S1:
7
<A NAME="RE15406SS-24">24</A>
Idemoyr V.
J. Natl. Med. Assoc.
2003,
95:
1211
<A NAME="RE15406SS-25A">25a</A>
Cope A.
Axen U.
Burrows EP.
Weinlich J.
J. Am. Chem. Soc.
1966,
88:
4228
<A NAME="RE15406SS-25B">25b</A>
Borowski E.
Mechlinski W.
Falkowski L.
Ziminski T.
Dutcher JD.
Tetrahedron Lett.
1965,
6:
473
<A NAME="RE15406SS-25C">25c</A>
Borowski E.
Zielinski J.
Ziminski T.
Falkowski L.
Kododziejczyk P.
Golik J.
Jereczek E.
Adlercreutz H.
Tetrahedron Lett.
1970,
11:
3909
<A NAME="RE15406SS-26A">26a</A>
Mechlinski W.
Schaffner CP.
Tetrahedron Lett.
1970,
11:
3873
<A NAME="RE15406SS-26B">26b</A>
Ganis P.
Avitabile G.
Mechlinski W.
J. Am. Chem. Soc.
1971,
93:
4560
<A NAME="RE15406SS-27">27</A>
Woodward RB.
Angew. Chem.
1957,
69:
50
<A NAME="RE15406SS-28A">28a</A>
Gilman, A. G. Nobel Lecture 1994.
<A NAME="RE15406SS-28B">28b</A>
Rodbell, M. Nobel Lecture 1994.
<A NAME="RE15406SS-29">29</A>
Singer SJ.
Nicolson GL.
Science
1972,
175:
720. As stated by Singer: ‘This particular paper was the culmination of our ideas
and experiments going back about 10 years’ (Citation Classics 1977, 46, 223)
<A NAME="RE15406SS-30">30</A>
Gottlieb D.
Carter HE.
Sloneker JH.
Ammann A.
Science
1958,
128:
361
<A NAME="RE15406SS-31">31</A>
Gottlieb D.
Phytopathology
1961,
51:
321
<A NAME="RE15406SS-32">32</A>
Marini F.
Arnow PM.
Lampen JO.
J. Gen. Microbiol.
1961,
24:
51
<A NAME="RE15406SS-33">33</A>
Lampen JO.
Arnow PM.
Borowska Z.
Laskin AI.
J. Bacteriol.
1962,
84:
1152
<A NAME="RE15406SS-34">34</A>
Kinsky SC.
Proc. Natl. Acad. Sci. U.S.A.
1962,
48:
1049
<A NAME="RE15406SS-35A">35a</A>
Kinsky SC.
Luse SA.
Van Deenen LLM.
Fed. Proc.
1966,
25:
1503
For the surface pressure measurement, see:
<A NAME="RE15406SS-35B">35b</A>
Demel RA.
Van Deenen LLM.
Kinsky SC.
J. Biol. Chem.
1965,
240:
2749
<A NAME="RE15406SS-36A">36a</A>
Andreoli TE.
Monahan M.
J. Gen. Physiol.
1968,
52:
300
<A NAME="RE15406SS-36B">36b</A>
Andreoli TE.
Dennis VW.
Weigl AM.
J. Gen. Physiol.
1969,
53:
133
<A NAME="RE15406SS-36C">36c</A>
Andreoli TE.
Ann. N. Y. Acad. Sci.
1974,
235:
448
<A NAME="RE15406SS-37A">37a</A>
Finkelstein A.
Holz R. In Membranes
Eisenman G.
Marcel Dekker;
New York:
1973.
p.377
<A NAME="RE15406SS-37B">37b</A>
Marty A.
Finkelstein A.
J. Gen. Physiol.
1975,
65:
515
<A NAME="RE15406SS-37C">37c</A>
Holz RW.
Ann. N. Y. Acad. Sci.
1974,
235:
469
<A NAME="RE15406SS-38A">38a</A>
Cass A.
Finkelstein A.
Krespi V.
J. Gen. Physiol.
1970,
56:
100
<A NAME="RE15406SS-38B">38b</A>
Holz R.
Finkelstein A.
J. Gen. Physiol.
1970,
56:
125 ; This latter paper also critically assesses the data fournished by Andreoli and co-workers in ref. 36b
<A NAME="RE15406SS-39A">39a</A>
Hsuchen C.-C.
Feingold DS.
Antimicrob. Agents Chemother.
1973,
4:
309
<A NAME="RE15406SS-39B">39b</A>
Hsuchen C.-C.
Feingold DS.
Biochem. Biophys. Res. Commun.
1973,
51:
972
<A NAME="RE15406SS-40A">40a</A>
De Kruijff B.
Gerritsen WJ.
Oerlemans A.
Demel RA.
van Deenen LLM.
Biochim. Biophys. Acta
1974,
339:
30
<A NAME="RE15406SS-40B">40b</A>
De Kruijff B.
Gerritsen WJ.
Oerlemans A.
van Dijck PWM.
Demel RA.
van Deenen LLM.
Biochim. Biophys. Acta
1974,
339:
44
<A NAME="RE15406SS-40C">40c</A>
De Kruijff B.
Demel RA.
Biochim. Biophys. Acta
1974,
339:
57
<A NAME="RE15406SS-41">41</A>
McElhaney RN.
Biochim. Biophys. Acta
1984,
779:
1
<A NAME="RE15406SS-42A">42a</A>
Norman AW.
Demel RA.
De Kruijff B.
van Deenen LLM.
J. Biol. Chem.
1972,
247:
1918
<A NAME="RE15406SS-42B">42b</A>
Norman AW.
Demel RA.
De Kruijff B.
Geurts van Kessel WSM.
van Deenen LLM.
Biochim. Biophys. Acta
1972,
290:
1
<A NAME="RE15406SS-43">43</A>
Van Hoogevest P.
De Kruijff B.
Biochim. Biophys. Acta
1978,
511:
397
<A NAME="RE15406SS-44">44</A>
Kleinberg ME.
Finkelstein A.
J. Membr. Biol.
1984,
80:
257
<A NAME="RE15406SS-45A">45a</A>
Bolard J.
Vertut-Croquin A.
Cybulska BE.
Gary-Bobo CM.
Biochim. Biophys. Acta
1981,
647:
241
<A NAME="RE15406SS-45B">45b</A>
Bolard J.
Legrand P.
Heitz F.
Cybulska B.
Biochemistry
1991,
30:
5707
<A NAME="RE15406SS-46">46</A>
Hartsel SC.
Benz SK.
Peterson RP.
Whyte BS.
Biochemistry
1991,
30:
77
<A NAME="RE15406SS-47">47</A>
Zumbuehl A.
Stano P.
Heer D.
Walde P.
Carreira EM.
Org. Lett.
2004,
6:
3683
POPC = palmitoyl-oleyl-phosphatidylcholine; LUVET100 = large unilamellar vesicles
whose mean diameter amounts to 100 nm; prepared using the extrusion technique.
<A NAME="RE15406SS-48A">48a</A>
Walde P. In
Encyclopedia of Nanoscience and Nanotechnology
Vol. 9:
Nalwa HS.
American Scientific Publishers;
Los Angeles:
2004.
p.43
<A NAME="RE15406SS-48B">48b</A>
Lichtenberg D. In
Biomembranes. Physical Aspects
Shinitzky M.
VCH Publishers Inc.;
New York:
1993.
p.63
<A NAME="RE15406SS-48C">48c</A>
Chapman D. In
Biomembranes. Physical Aspects
Shinitzky M.
VCH Publishers Inc.;
New York:
1993.
p.29
<A NAME="RE15406SS-49">49</A>
Monomers have been shown to exist below the critical self-association concentration,
estimated to be 1 M. See ref. 45b.
<A NAME="RE15406SS-50">50</A>
Baginski M.
Resat H.
McCammon JA.
Mol. Pharmacol.
1997,
52:
560
<A NAME="RE15406SS-51">51</A>
Okamoto Y.
Aoki S.
Mataga I.
Mycopathol.
2004,
158:
9
<A NAME="RE15406SS-52">52</A>
Warn PA.
Sharp A.
Guinea J.
Denning DW.
J. Antimicrob. Chemother.
2004,
53:
743
<A NAME="RE15406SS-53A">53a</A>
Cleary JD.
Chapman SW.
Nolan RL.
Antimicrob. Agents Chemother.
1992,
36:
977
<A NAME="RE15406SS-53B">53b</A>
Sau K.
Mambula SS.
Latz E.
Henneke P.
Golenbock DT.
Levitz SM.
J. Biol. Chem.
2003,
278:
37561
<A NAME="RE15406SS-54">54</A>
Schaffner CP.
Borowski E.
Antibiot. Chemother.
1961,
11:
724
<A NAME="RE15406SS-55">55</A>
Chéron M.
Cybulska B.
Mazerski J.
Grzybowska J.
Czerwinski A.
Borowski E.
Biochem. Pharmacol.
1988,
37:
827
<A NAME="RE15406SS-56A">56a</A>
Selassie CD. In
Burger’s Medicinal Chemistry and Drug Discovery
Vol. 1:
Abraham DJ.
John Wiley & Sons;
New York:
2003.
<A NAME="RE15406SS-56B">56b</A>
Free SM.
Wilson JW.
J. Med. Chem.
1964,
7:
395
<A NAME="RE15406SS-57">57</A>
Lechevalier H.
Borowski E.
Lampen JO.
Schaffner CP.
Antibiot. Chemother.
1961,
11:
640
See also:
<A NAME="RE15406SS-58A">58a</A>
Czerwinski A.
Zieniawa T.
Borowski E.
Micossi LG.
J. Antibiot.
1990,
43:
680
<A NAME="RE15406SS-58B">58b</A>
Grzybowska J.
Borowski E.
J. Antibiot.
1990,
43:
907
For previous and later results, see also:
<A NAME="RE15406SS-59A">59a</A>
Jarzebski A.
Falkowski L.
Borowski E.
J. Antibiot.
1982,
35:
220
<A NAME="RE15406SS-59B">59b</A>
Czerwinski A.
Grzybowska J.
Borowski E.
J. Antibiot.
1986,
39:
1025
<A NAME="RE15406SS-59C">59c</A>
Czerwinski A.
König WA.
Zieniawa T.
Sowinski P.
Sinnwell V.
Milewski S.
Borowski E.
J. Antibiot.
1991,
44:
979
See also the work by other groups:
<A NAME="RE15406SS-59D">59d</A>
Wright KJJ.
Albarella JA.
Krepski LR.
Loenbenberg D.
J. Antibiot.
1982,
35:
911
<A NAME="RE15406SS-59E">59e</A>
Parmegiani RM.
Loenberg D.
Antonacci B.
Yarosh-Tomaine T.
Scupp R.
Wright JJ.
Chiu PJS.
Miller GH.
Antimicrob. Agents Chemother.
1987,
31:
1756
<A NAME="RE15406SS-59F">59f</A>
Hoeprich PD.
Flynn NM.
Kawachi MM.
Lee KK.
Lawrence RM.
Heath LK.
Schaffner CP.
Ann. N. Y. Acad. Sci.
1988,
544:
517
<A NAME="RE15406SS-60">60</A>
Mechlinski W.
Schaffner CP.
J. Antibiot.
1972,
25:
256
<A NAME="RE15406SS-61">61</A>
Taylor AW.
Costello BJ.
Hunter PA.
MacLachlan WS.
Shanks CT.
J. Antibiot.
1993,
46:
486
<A NAME="RE15406SS-62">62</A>
MacPherson DT.
Corbett DF.
Costello BJ.
Driver MJ.
Greenlees AR.
MacLachlan WS.
Shanks CT.
Taylor AW. In
Recent Advances in the Chemistry of Anti-infective Agents
Bentley PH.
Ponsford R.
Royal Society of Chemistry;
Cambridge (UK):
1993.
p.205-222
<A NAME="RE15406SS-63">63</A>
Zumbuehl A.
Jeannerat D.
Martin SE.
Sohrmann M.
Stano P.
Vigassy T.
Clark DD.
Hussey SL.
Peter M.
Peterson BR.
Pretsch E.
Walde P.
Carreira EM.
Angew. Chem. Int. Ed.
2004,
43:
5181
<A NAME="RE15406SS-64">64</A>
Nicolaou KC.
Chakraborty TK.
Daines RA.
Simpkins NS.
J. Chem. Soc., Chem. Commun.
1986,
413
<A NAME="RE15406SS-65">65</A>
Gilman S.
Grieco PA.
Nishizawa M.
J. Org. Chem.
1976,
41:
1485
<A NAME="RE15406SS-66">66</A>
Kennedy RM.
Abiko A.
Masamune S.
Tetrahedron Lett.
1988,
29:
447
<A NAME="RE15406SS-67">67</A>
Nicolaou KC.
Chakraborty TK.
Daines RA.
Simpkins NS.
J. Chem. Soc., Chem. Commun.
1987,
686
<A NAME="RE15406SS-68">68</A>
Driver MJ.
Greenlees AR.
MacPherson DT.
J. Chem. Soc., Perkin Trans. 1
1992,
3155
<A NAME="RE15406SS-69">69</A>
Nicolaou KC.
Chakraborty TK.
Ogawa Y.
Daines RA.
Simpkins NS.
Furst GT.
J. Am. Chem. Soc.
1988,
110:
4660
<A NAME="RE15406SS-70">70</A>
Carpino LA.
Han GY.
J. Am. Chem. Soc.
1976,
92:
5748
<A NAME="RE15406SS-71">71</A>
Driver MJ.
Greenlees AR.
MacLachlan WS.
MacPherson DT.
Taylor AW.
Tetrahedron Lett.
1992,
33:
4357
<A NAME="RE15406SS-72">72</A>
Corbett DF.
Dean DK.
Greenlees AR.
MacPherson DT.
J. Antibiot.
1995,
48:
509
<A NAME="RE15406SS-73">73</A> For an account of this group’s recent work in the field of macrolide polyenes,
see:
Kadota I.
Hu Y.
Packard GK.
Rychnovsky SD.
Proc. Nat. Acad. Sci. U.S.A.
2004,
101:
11992
<A NAME="RE15406SS-74">74</A>
Rogers BN.
Selsted ME.
Rychnovsky SD.
Bioorg. Med. Chem. Lett.
1997,
7:
3177
<A NAME="RE15406SS-75">75</A>
Takai K.
Nitta K.
Utimoto K.
J. Am. Chem. Soc.
1986,
10:
7408
<A NAME="RE15406SS-76">76</A>
Sonogashira K. In
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
p.203
<A NAME="RE15406SS-77">77</A>
McNamara CM.
Box S.
Crawforth JM.
Hickman BS.
Norwood TJ.
Rawlings BJ.
J. Chem. Soc., Perkin Trans. 1
1998,
83
<A NAME="RE15406SS-78">78</A>
Caffrey P.
Lynch S.
Flood E.
Finnan S.
Oliynyk M.
Chem. Biol.
2001,
8:
713
<A NAME="RE15406SS-79">79</A>
Byrne B.
Carmody M.
Gibson E.
Rawlings B.
Caffrey P.
Chem. Biol.
2003,
10:
1215
<A NAME="RE15406SS-80">80</A>
Carmody M.
Byrne B.
Murphy B.
Breen C.
Lynch S.
Flood E.
Finnan S.
Caffrey P.
Gene
2004,
343:
107
<A NAME="RE15406SS-81">81</A>
Beau J.-M. In
Recent Progress in the Chemical Synthesis of Antibiotics
Lukacs G.
Ohno M.
Springer-Verlag;
Berlin/Heidelberg:
1990.
p.135-182
<A NAME="RE15406SS-82">82</A>
Masamune S.
Bates GS.
Corcoran JW.
Angew. Chem., Int. Ed. Engl.
1977,
16:
585
<A NAME="RE15406SS-83">83</A>
Nicolaou KC.
Tetrahedron
1977,
33:
683
<A NAME="RE15406SS-84">84</A> Quoted from:
Ganesan A.
Pure Appl. Chem.
2001,
73:
1033
<A NAME="RE15406SS-85">85</A>
Corey EJ.
Trybulski EJ.
Melvin LS.
Nicolaou KC.
Secrist JA.
Lett R.
Sheldrake PW.
Falck JR.
Brunelle DJ.
Haslanger MF.
Kim S.
Yoo S.-e.
J. Am. Chem. Soc.
1978,
100:
4618
<A NAME="RE15406SS-86">86</A> See, for example, the very entertaining account:
Perkin WH.
J. Chem. Soc.
1929,
1347
The common title to these articles is ‘Zur Kenntnis des Kohlenstoffringes.’ See for
instance:
<A NAME="RE15406SS-87A">87a</A>
Ruzicka L.
Helv. Chim. Acta
1926,
9:
230
<A NAME="RE15406SS-87B">87b</A>
Ruzicka L.
Stoll M.
Schinz H.
Helv. Chim. Acta
1926,
9:
249
<A NAME="RE15406SS-87C">87c</A>
Ruzicka L.
Brugger W.
Helv. Chim. Acta
1926,
9:
339
<A NAME="RE15406SS-87D">87d</A>
Ruzicka L.
Brugger W.
Helv. Chim. Acta
1926,
9:
389
<A NAME="RE15406SS-87E">87e</A>
Ruzicka L.
Brugger W.
Helv. Chim. Acta
1926,
9:
399
<A NAME="RE15406SS-87F">87f</A>
Ruzicka L.
Brugger W.
Pfeiffer M.
Stoll M.
Schinz H.
Helv. Chim. Acta
1926,
9:
499
<A NAME="RE15406SS-87G">87g</A>
Ruzicka L.
Helv. Chim. Acta
1926,
9:
715
<A NAME="RE15406SS-87H">87h</A>
Ruzicka L.
Helv. Chim. Acta
1926,
9:
1008
<A NAME="RE15406SS-87I">87i</A>
Ruzicka L.
Stoll M.
Helv. Chim. Acta
1928,
11:
1159
<A NAME="RE15406SS-88">88</A>
Baeyer A.
Villiger V.
Ber. Dtsch. Chem. Ges.
1899,
32:
3625
<A NAME="RE15406SS-89">89</A>
Ziegler K.
Eberle H.
Ohlinger H.
Justus Liebigs Ann. Chem.
1933,
504:
94
<A NAME="RE15406SS-90A">90a</A>
Ruggli P.
Justus Liebigs Ann. Chem.
1912,
392:
92
<A NAME="RE15406SS-91A">91a</A>
Stoll M.
Rouvé A.
Helv. Chim. Acta
1934,
17:
1283
<A NAME="RE15406SS-91B">91b</A>
Stoll M.
Rouvé A.
Stoll-Comte G.
Helv. Chim. Acta
1934,
17:
1289
<A NAME="RE15406SS-91C">91c</A>
Davies AG.
Davies M.
Stoll M.
Helv. Chim. Acta
1954,
37:
1351
<A NAME="RE15406SS-92A">92a</A>
Bennett GM.
Trans. Faraday Soc.
1941,
37:
794
<A NAME="RE15406SS-92B">92b</A>
Galli C.
Illuminati G.
Mandolini L.
J. Am. Chem. Soc.
1973,
95:
8374
<A NAME="RE15406SS-93A">93a</A>
Baldwin JE.
J. Chem. Soc., Chem. Commun.
1976,
734
<A NAME="RE15406SS-93B">93b</A>
Baldwin JE.
Cutting J.
Dupont W.
Kruse L.
Silberman L.
Thomas RC.
J. Chem. Soc., Chem. Commun.
1976,
736
<A NAME="RE15406SS-93C">93c</A>
Baldwin JE.
J. Chem. Soc., Chem. Commun.
1976,
738
<A NAME="RE15406SS-93D">93d</A>
Baldwin JE.
Thomas RC.
Kruse LI.
Silberman L.
J. Org. Chem.
1977,
42:
3846
<A NAME="RE15406SS-94A">94a</A>
Grob CA.
Schiess PW.
Angew. Chem., Int. Ed. Engl.
1967,
6:
1
<A NAME="RE15406SS-94B">94b</A>
Grob CA.
Angew. Chem., Int. Ed. Engl.
1969,
8:
535
<A NAME="RE15406SS-95A">95a</A>
Eschenmoser A.
Frey A.
Helv. Chim. Acta
1952,
35:
1660
<A NAME="RE15406SS-95B">95b</A>
Felix D.
Schreiber J.
Ohloff G.
Eschenmoser A.
Helv. Chim. Acta
1971,
54:
2896
See also the work by Tanabe:
<A NAME="RE15406SS-95C">95c</A>
Tanabe M.
Crowe DF.
Dehn RL.
Tetrahedron Lett.
1967,
40:
3943
<A NAME="RE15406SS-95D">95d</A>
Tanabe M.
Crowe DF.
Dehn RL.
Detre G.
Tetrahedron Lett.
1967,
40:
3739
<A NAME="RE15406SS-96A">96a</A>
Grob CA.
Baumann W.
Helv. Chim. Acta
1955,
38:
594
<A NAME="RE15406SS-96B">96b</A>
Grob CA.
Kiefer HR.
Lutz H.
Wilkens H.
Tetrahedron Lett.
1964,
39:
2901
<A NAME="RE15406SS-97">97</A>
Stork G.
Landesman HK.
J. Am. Chem. Soc.
1956,
78:
5129
<A NAME="RE15406SS-98A">98a</A>
Wharton PS.
J. Org. Chem.
1961,
26:
4781
<A NAME="RE15406SS-98B">98b</A>
Wharton PS.
Sumi Y.
Kretchmer RA.
J. Org. Chem.
1965,
30:
234
<A NAME="RE15406SS-98C">98c</A>
Wharton PS.
Hiegel GA.
J. Org. Chem.
1965,
30:
3254
<A NAME="RE15406SS-99A">99a</A>
Marshall JA.
Bundy GL.
J. Am. Chem. Soc.
1966,
88:
4291
<A NAME="RE15406SS-99B">99b</A>
Marshall JA.
Babler JH.
Tetrahedron Lett.
1970,
44:
3861
<A NAME="RE15406SS-100A">100a</A>
Corey EJ.
Mitra RB.
Uda H.
J. Am. Chem. Soc.
1963,
85:
362
<A NAME="RE15406SS-100B">100b</A>
Corey EJ.
Mitra RB.
Uda H.
J. Am. Chem. Soc.
1964,
86:
485
<A NAME="RE15406SS-101A">101a</A>
Borowitz IJ.
Gonis G.
Tetrahedron Lett.
1964,
19:
1151
<A NAME="RE15406SS-101B">101b</A>
Borowitz IJ.
Gonis G.
Kelsey R.
Rapp R.
Williams GJ.
J. Org. Chem.
1966,
31:
3032
<A NAME="RE15406SS-102">102</A> See, for example:
Sternbach D.
Shibuya M.
Jaisli F.
Bonetti M.
Eschenmoser A.
Angew. Chem., Int. Ed. Engl.
1979,
18:
634
<A NAME="RE15406SS-103">103</A>
Taub D.
Girotra NN.
Hoffsommer RD.
Kuo CH.
Slates HL.
Weber S.
Wendler NL.
Tetrahedron
1968,
24:
2441
<A NAME="RE15406SS-104">104</A>
Colvin EW.
Purcell TA.
Raphael RA.
J. Chem. Soc., Chem. Commun.
1972,
1031
<A NAME="RE15406SS-105A">105a</A>
Staab HA.
Chem. Ber.
1957,
90:
1326
<A NAME="RE15406SS-105B">105b</A>
Staab HA.
Mannschreck A.
Chem. Ber.
1962,
95:
1284
<A NAME="RE15406SS-106">106</A>
Corey EJ.
Nicolaou KC.
J. Am. Chem. Soc.
1974,
96:
5614
<A NAME="RE15406SS-107">107</A>
Mukaiyama T.
Matsueda R.
Suzuki M.
Tetrahedron Lett.
1970,
22:
1901
<A NAME="RE15406SS-108">108</A>
Masamune S.
Kamata S.
Schilling W.
J. Am. Chem. Soc.
1975,
97:
3515
<A NAME="RE15406SS-109A">109a</A>
Masamune S.
Kim CU.
Wilson KE.
Spessard GO.
Georghiou PE.
Bates GS.
J. Am. Chem. Soc.
1975,
97:
3512
<A NAME="RE15406SS-109B">109b</A>
Masamune S.
Yamamoto H.
Kamata S.
Fukuzawa A.
J. Am. Chem. Soc.
1975,
97:
3513
<A NAME="RE15406SS-110">110</A>
Mukaiyama T.
Usui M.
Saigo K.
Chem. Lett.
1976,
49
<A NAME="RE15406SS-111A">111a</A>
Gerlach H.
Wetter H.
Helv. Chim. Acta
1974,
57:
2306
<A NAME="RE15406SS-111B">111b</A>
Gerlach H.
Oertle K.
Thalmann A.
Servi S.
Helv. Chim. Acta
1975,
58:
2036
<A NAME="RE15406SS-112">112</A> We may want to recall that metal-templated ring closure had been used by the
Eschenmoser group to form the corrin ring in the context of the vitamin B12 synthesis. For an account, see:
Eschenmoser A.
Pure Appl. Chem.
1969,
20:
1
<A NAME="RE15406SS-113">113</A>
Inanaga J.
Hirata K.
Saeki H.
Katsuki T.
Yamaguchi M.
Bull. Chem. Soc. Jpn.
1979,
52:
1989
<A NAME="RE15406SS-114">114</A>
Corey EJ.
Kirst HA.
J. Am. Chem. Soc.
1972,
94:
667
<A NAME="RE15406SS-115A">115a</A>
Corey EJ.
Hamanaka E.
J. Am. Chem. Soc.
1964,
86:
1641
<A NAME="RE15406SS-115B">115b</A>
Corey EJ.
Hamanaka E.
J. Am. Chem. Soc.
1967,
89:
2758
<A NAME="RE15406SS-116">116</A>
Burri KF.
Cardone RA.
Chen WY.
Rosen P.
J. Am. Chem. Soc.
1978,
100:
7069
<A NAME="RE15406SS-117">117</A>
Stork G.
Nakamura E.
J. Am. Chem. Soc.
1979,
44:
4010
<A NAME="RE15406SS-118">118</A>
Nicolaou KC.
Seitz SP.
Pavia MR.
Petasis NA.
J. Am. Chem. Soc.
1979,
44:
4011
<A NAME="RE15406SS-119">119</A>
Floyd DM.
Fritz AW.
Tetrahedron Lett.
1981,
22:
2947
<A NAME="RE15406SS-120">120</A>
Prunet J.
Angew. Chem. Int. Ed.
2003,
42:
2826
<A NAME="RE15406SS-121">121</A>
Weidmann B.
Seebach D.
Helv. Chim. Acta
1980,
63:
2451
<A NAME="RE15406SS-122">122</A>
Narasaka K.
Pai FC.
Tetrahedron
1984,
40:
2233
<A NAME="RE15406SS-123A">123a</A>
Chen K.-M.
Hardtmann GE.
Prasad K.
Repic O.
Shapiro MJ.
Tetrahedron Lett.
1987,
28:
155
<A NAME="RE15406SS-123B">123b</A>
Sletzinger M.
Verhoeven TR.
Volante RP.
McNamara JM.
Corley EG.
Liu TMH.
Tetrahedron Lett.
1985,
26:
2951
<A NAME="RE15406SS-124">124</A>
Evans DA.
Chapman KT.
Carreira EM.
J. Am. Chem. Soc.
1988,
110:
3560
<A NAME="RE15406SS-125A">125a</A>
Evans DA.
Nelson JV.
Taber TR.
Top. Stereochem.
1982,
13:
1
<A NAME="RE15406SS-125B">125b</A>
Heathcock CH. In
Comprehensive Organic Synthesis, Vol. 2
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.133-179
<A NAME="RE15406SS-125C">125c</A>
Heathcock CH. In
Comprehensive Organic Synthesis, Vol. 2
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.181-238
<A NAME="RE15406SS-125D">125d</A>
Kim BM.
Williams SF.
Masamune S. In
Comprehensive Organic Synthesis, Vol. 2
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.239
<A NAME="RE15406SS-126A">126a</A>
Paterson I.
Goodman JM.
Tetrahedron Lett.
1989,
30:
997
<A NAME="RE15406SS-126B">126b</A>
Paterson I.
Goodman JM.
Lister MA.
Schumann RC.
McKlure CK.
Norcross RD.
Tetrahedron
1990,
46:
4663
<A NAME="RE15406SS-127A">127a</A>
Mikami K.
Matsukawa S.
J. Am. Chem. Soc.
1994,
116:
4077
<A NAME="RE15406SS-127B">127b</A>
Carreira EM.
Singer RA.
Lee W.
J. Am. Chem. Soc.
1994,
116:
8837
The reaction is commonly referred to as the Fráter-Seebach reaction. See:
<A NAME="RE15406SS-128A">128a</A>
Fráter G.
Helv. Chim. Acta
1979,
62:
2825
<A NAME="RE15406SS-128B">128b</A>
Fráter G.
Helv. Chim. Acta
1979,
62:
2829
<A NAME="RE15406SS-128C">128c</A>
Seebach D.
Wasmuth D.
Helv. Chim. Acta
1980,
63:
197
For a similar use of β-hydroxy esters but not in the context of alkylations, see:
<A NAME="RE15406SS-128D">128d</A>
Kraus GA.
Taschner MJ.
Tetrahedron Lett.
1977,
52:
4575
<A NAME="RE15406SS-129">129</A>
Finan JM.
Kishi Y.
Tetrahedron Lett.
1982,
23:
2719
<A NAME="RE15406SS-130">130</A>
Ma P.
Martin VS.
Masamune S.
Sharpless KB.
Viti SM.
J. Org. Chem.
1982,
47:
1378
<A NAME="RE15406SS-131">131</A>
Nicolaou KC.
Uenishi J.
J. Chem. Soc., Chem. Commun.
1982,
1292
<A NAME="RE15406SS-132A">132a</A>
Katsuki T.
Sharpless KB.
J. Am. Chem. Soc.
1980,
102:
5974
<A NAME="RE15406SS-132B">132b</A>
Rossiter BE.
Katsuki T.
Sharpless KB.
J. Am. Chem. Soc.
1981,
103:
464
An alternative to epoxidation followed by ring-opening is the regioselective hydroboration
of allylic alcohols. However, this method has not been used in the context of 1,3-polyol
systems, but rather to access primary alcohols via hydroboration (9-BBN) of terminal
olefins. See, for example:
<A NAME="RE15406SS-133A">133a</A>
Kim H.
Choi WJ.
Jung J.
Kim S.
Kim D.
J. Am. Chem. Soc.
2003,
125:
10238
<A NAME="RE15406SS-133B">133b</A>
Buszek KR.
Sato N.
Jeong Y.
Tetrahedron Lett.
2002,
43:
181
See also the hydroboration of vinyl ethers by McGarvey:
<A NAME="RE15406SS-133C">133c</A>
McGarvey GJ.
Bajwa JS.
Tetrahedron Lett.
1985,
26:
6297
See, for example:
<A NAME="RE15406SS-134A">134a</A>
Solladié G.
Demailly G.
Greck C.
Tetrahedron Lett.
1985,
26:
435
<A NAME="RE15406SS-134B">134b</A>
Solladié G.
Demailly G.
Greck C.
J. Org. Chem.
1985,
50:
1552
<A NAME="RE15406SS-135">135</A>
Curran DP.
J. Am. Chem. Soc.
1982,
104:
4024
<A NAME="RE15406SS-136A">136a</A>
Kanemasa S.
Kobayashi S.
Nishiuchi M.
Yamamoto H.
Wada E.
Tetrahedron Lett.
1991,
32:
6367
<A NAME="RE15406SS-136B">136b</A>
Kanemasa S.
Nishiuchi M.
Wada E.
Tetrahedron Lett.
1992,
33:
1357
<A NAME="RE15406SS-136C">136c</A>
Kanemasa S.
Nishiuchi M.
Kamimura A.
Hori K.
J. Am. Chem. Soc.
1994,
116:
2324
<A NAME="RE15406SS-136D">136d</A>
Bode JW.
Fraefel N.
Muri D.
Carreira EM.
Angew. Chem. Int. Ed.
2001,
40:
2082
<A NAME="RE15406SS-137A">137a</A>
Evans DA.
Gauchet-Prunet JA.
J. Org. Chem.
1993,
58:
2446
<A NAME="RE15406SS-137B">137b</A>
Evans DA.
Connell BT.
J. Am. Chem. Soc.
2003,
125:
10899
<A NAME="RE15406SS-138">138</A>
Hirama M.
Uei M.
Tetrahedron Lett.
1982,
23:
5307
<A NAME="RE15406SS-139">139</A>
Barton DHR.
McCombie SW.
J. Chem. Soc., Perkin Trans. 1
1975,
1574
<A NAME="RE15406SS-140A">140a</A>
Hanessian S.
Murray PJ.
Sahoo SP.
Tetrahedron Lett.
1985,
26:
5623
<A NAME="RE15406SS-140B">140b</A>
Hanessian S.
Murray PJ.
Sahoo SP.
Tetrahedron Lett.
1985,
26:
5627
<A NAME="RE15406SS-140C">140c</A>
Hanessian S.
Murray PJ.
Sahoo SP.
Tetrahedron Lett.
1985,
26:
5631
<A NAME="RE15406SS-141">141</A>
Vigneron JP.
Méric R.
Larchevêque M.
Debal A.
Lallemand JY.
Kunesch G.
Zagatti P.
Gallois M.
Tetrahedron
1984,
40:
3521
<A NAME="RE15406SS-142A">142a</A>
McGarvey GJ.
Hiner RN.
Matsubara Y.
Oh T.
Tetrahedron Lett.
1983,
24:
2733
<A NAME="RE15406SS-142B">142b</A>
Overly KR.
Williams JM.
McGarvey GJ.
Tetrahedron Lett.
1990,
31:
4573
<A NAME="RE15406SS-142C">142c</A>
McGarvey GJ.
Wilson KJ.
Shanholtz CE.
Tetrahedron Lett.
1992,
33:
2641
<A NAME="RE15406SS-143">143</A>
Lipshutz BH.
Kozlowski JA.
J. Org. Chem.
1984,
49:
1147
<A NAME="RE15406SS-144A">144a</A>
Masamune S.
Kaiho T.
Garvey DS.
J. Am. Chem. Soc.
1982,
104:
5521
<A NAME="RE15406SS-144B">144b</A>
Boschelli D.
Ellingboe JW.
Masamune S.
Tetrahedron Lett.
1984,
25:
3395
<A NAME="RE15406SS-144C">144c</A>
Masamune S.
Ma P.
Okumoto H.
Ellingboe JW.
Ito Y.
J. Org. Chem.
1984,
49:
2834
<A NAME="RE15406SS-144D">144d</A>
Boschelli D.
Takemasa T.
Nishitani Y.
Masamune S.
Tetrahedron Lett.
1985,
26:
5239
<A NAME="RE15406SS-144E">144e</A>
Kennedy RM.
Abiko A.
Takemasa T.
Okumoto H.
Masamune S.
Tetrahedron Lett.
1988,
29:
451
<A NAME="RE15406SS-145A">145a</A>
Nicolaou KC.
Daines RA.
Uenishi J.
Li WS.
Papahatijs DP.
Chakraborty TK.
J. Am. Chem. Soc.
1988,
110:
4672
<A NAME="RE15406SS-145B">145b</A>
Nicolaou KC.
Daines RA.
Chakraborty TK.
Ogawa Y.
J. Am. Chem. Soc.
1988,
110:
4685
<A NAME="RE15406SS-145C">145c</A>
Nicolaou KC.
Daines RA.
Ogawa Y.
Chakraborty TK.
J. Am. Chem. Soc.
1988,
110:
4696
<A NAME="RE15406SS-146A">146a</A>
McGarvey GJ.
Williams JM.
Hiner RN.
Matsubara Y.
Oh T.
J. Am. Chem. Soc.
1986,
108:
4943
<A NAME="RE15406SS-146B">146b</A>
McGarvey GJ.
Mathys JA.
Wilson KJ.
Overly KR.
Buonora PT.
Spoors PG.
J. Org. Chem.
1995,
60:
7778
<A NAME="RE15406SS-146C">146c</A>
McGarvey GJ.
Mathys JA.
Wilson KJ.
J. Org. Chem.
1996,
61:
5704
See also the synthetic studies on the polyene synthesis:
<A NAME="RE15406SS-146D">146d</A>
Williams JM.
McGarvey GJ.
Tetrahedron Lett.
1985,
26:
4891
<A NAME="RE15406SS-147">147</A>
In a later study, epoxide 103 was accessed from the known acetonide 104 which, in turn, could be prepared from
l-malic acid dimethyl ester (Scheme
[51]
). See ref. 146c.
<A NAME="RE15406SS-148A">148a</A>
Hanessian S.
Sahoo SP.
Botta M.
Tetrahedron Lett.
1987,
28:
1143
<A NAME="RE15406SS-148B">148b</A>
Hanessian S.
Sahoo SP.
Botta M.
Tetrahedron Lett.
1987,
28:
1147
<A NAME="RE15406SS-148C">148c</A>
Hanessian S.
Botta M.
Tetrahedron Lett.
1987,
28:
1151
<A NAME="RE15406SS-149">149</A>
Solladié G.
Hutt J.
Tetrahedron Lett.
1987,
28:
797
<A NAME="RE15406SS-150A">150a</A>
Liang D.
Pauls HW.
Fraser-Reid B.
Can. J. Chem.
1986,
64:
1800
<A NAME="RE15406SS-150B">150b</A>
Liang D.
DeCamp Schuda A.
Fraser-Reid B.
Carbohydr. Res.
1987,
164:
229
<A NAME="RE15406SS-151">151</A>
Krüger J.
Carreira EM.
J. Am. Chem. Soc.
1998,
120:
837
<A NAME="RE15406SS-152">152</A>
Pagenkopf BL.
Krüger J.
Stojanovic A.
Carreira EM.
Angew. Chem. Int. Ed.
1998,
37:
3124
<A NAME="RE15406SS-153">153</A>
Krüger J.
Carreira EM.
Tetrahedron Lett.
1998,
39:
7013
<A NAME="RE15406SS-154">154</A>
Clemens RJ.
Hyatt JA.
J. Org. Chem.
1985,
50:
2431
<A NAME="RE15406SS-155A">155a</A>
Müller S.
Liepold B.
Roth GJ.
Bestmann HJ.
Synlett
1996,
521
<A NAME="RE15406SS-155B">155b</A>
Ohira S.
Synth. Commun.
1989,
19:
561
<A NAME="RE15406SS-156A">156a</A>
Frigerio M.
Santagostino M.
Sputore S.
J. Org. Chem.
1999,
64:
4537
<A NAME="RE15406SS-156B">156b</A>
Meyer SD.
Schreiber SL.
J. Org. Chem.
1994,
59:
7549
<A NAME="RE15406SS-156C">156c</A>
Ireland RE.
Liu L.
J. Org. Chem.
1993,
58:
2899
<A NAME="RE15406SS-157A">157a</A>
BouzBouz S.
Cossy J.
Org. Lett.
2000,
2:
3975
Recent reports by Carreira involving Zn-mediated addition reactions of terminal alkynes
and aldehydes are relevant to this bond-construction strategy, see:
<A NAME="RE15406SS-157B">157b</A>
Frantz DE.
Fassler R.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
1806
<A NAME="RE15406SS-157C">157c</A>
Frantz DE.
Fässler R.
Tomooka CS.
Carreira EM.
Acc. Chem. Res.
2000,
33:
373
<A NAME="RE15406SS-157D">157d</A>
El-Sayed E.
Anand NK.
Carreira EM.
Org. Lett.
2001,
3:
3017
<A NAME="RE15406SS-157E">157e</A>
Boyall D.
Frantz DE.
Carreira EM.
Org. Lett.
2002,
4:
2605
<A NAME="RE15406SS-158">158</A>
Hafner A.
Duthaler RO.
Marti R.
Rihs J.
Rothe-Streit P.
Schwarzenbach F.
J. Am. Chem. Soc.
1992,
114:
2321
<A NAME="RE15406SS-159">159</A> For an interesting review on meso compounds, see:
Hoffmann RW.
Angew. Chem. Int. Ed.
2003,
42:
1096
<A NAME="RE15406SS-160A">160a</A>
Bonini C.
Chiummiento L.
Martuscelli A.
Viggiani L.
Tetrahedron Lett.
2004,
45:
2177
<A NAME="RE15406SS-160B">160b</A>
Bonini C.
Racioppi R.
Righi G.
Viggiani L.
J. Org. Chem.
1993,
58:
802
<A NAME="RE15406SS-161">161</A>
Nicolaou KC.
Papahatjis DP.
Claremon DA.
Magolda RL.
Dolle RE.
J. Org. Chem.
1985,
50:
1440 ; In this synthesis (-)-diethyl-d-tartrate was used
<A NAME="RE15406SS-162">162</A>
Brückner R.
Tetrahedron Lett.
1988,
29:
5747
<A NAME="RE15406SS-163">163</A>
Still WK.
Schneider JA.
Tetrahedron Lett.
1980,
21:
1035
<A NAME="RE15406SS-164">164</A>
Brooks DW.
Kellogg RP.
Tetrahedron Lett.
1982,
23:
4991
<A NAME="RE15406SS-165">165</A>
Tholander J.
Carreira EM.
Helv. Chim. Acta
2001,
84:
613
<A NAME="RE15406SS-166A">166a</A>
Xu D.
Crispino GA.
Sharpless KB.
J. Am. Chem. Soc.
1992,
114:
7570
<A NAME="RE15406SS-166B">166b</A>
Becker H.
Soler MA.
Sharpless KB.
Tetrahedron
1995,
51:
1345
<A NAME="RE15406SS-167">167</A>
Blanchette MA.
Choy W.
Davis JT.
Essenfeld AM.
Masamune S.
Roush WR.
Sakai T.
Tetrahedron Lett.
1984,
25:
2183
<A NAME="RE15406SS-168A">168a</A>
Cope AC.
Nelson NA.
Smith DS.
J. Am. Chem. Soc.
1954,
76:
1100
<A NAME="RE15406SS-168B">168b</A>
Anet R.
Tetrahedron Lett.
1961,
20:
720
<A NAME="RE15406SS-169">169</A>
Wollenberg RH.
Tetrahedron Lett.
1978,
8:
717
<A NAME="RE15406SS-170">170</A>
Vedejs E.
Bershas JP.
Tetrahedron Lett.
1975,
16:
1359
<A NAME="RE15406SS-171A">171a</A>
Schmidt RR.
Michel J.
Angew. Chem., Int. Ed. Engl.
1980,
19:
731
<A NAME="RE15406SS-171B">171b</A>
Schmidt RR.
Michel J.
Tetrahedron Lett.
1984,
25:
821
For a review, see:
<A NAME="RE15406SS-171C">171c</A>
Schmidt RR.
Angew. Chem., Int. Ed. Engl.
1986,
25:
212
<A NAME="RE15406SS-172">172</A>
Glycoside 266 was prepared in 14 steps from the glucose derivative 268 (Scheme
[52]
). The synthesis encompassed deoxygenation at C-5′ and double inversion at C-3′ in
order to install the azide functionality, which after the glycosid-ation was reduced
to the required amine. See ref. 145b.
<A NAME="RE15406SS-173">173</A> For a review, see:
Paulsen H.
Angew. Chem., Int. Ed. Engl.
1982,
21:
155