Subscribe to RSS
DOI: 10.1055/s-2006-926368
Amphotericin B: 50 Years of Chemistry and Biochemistry
Publication History
Publication Date:
10 March 2006 (online)

Abstract
The last century has seen the isolation and synthesis of a multitude of molecules with remarkable biological activity. Some of them represent milestones in chemical space and points of reference in the various disciplines of chemical synthesis, medicine, and biology that they beneficially impact. The notable history of natural products as antibiotics dates back to the 18th century. They continue to play an indispensable role in the advances that have been seen in the quality of life for the general population. This has come about because of the rich dialog that can be found at the interfaces between chemistry, biochemistry, biology, and medicine. In this review we examine amphotericin B as an important representative of antibiotics with a long rich history. Its impact continues to be felt today in its use in the clinic to combat fungal infections. In the first part, we review the biochemical efforts aimed at the explanation of amphotericin B’s mechanisms of action; in the second part, we take a look at the impact amphotericin B has had on the chemical community in the last two decades. The continuous interest aroused by amphotericin B reveals how much we still do not know about this space.
- 
            1 Introduction 
- 
            2 Amphotericin B from Isolation to Structure-Activity Relationship Studies 
- 
            2.1 Amphotericin B in the Context of Antibiotic Research 
- 
            2.2 Studies on Amphotericin B 
- 
            2.2.1 Structure of Amphotericin B 
- 
            2.2.2 Mechanism of Action of Amphotericin B 
- 
            2.2.3 Structure-Activity Relationship Studies, Part I 
- 
            2.2.4 Degradation Studies 
- 
            2.2.5 Structure-Activity Relationship Studies, Part II 
- 
            2.2.6 Biosynthesis of Deoxyamphotericins 
- 
            3 Studies toward the Total Synthesis of Amphotericin B 
- 
            3.1 Synthesis of Macrolides at the Beginning of the 1980s 
- 
            3.1.1 Macrocyclization Reactions 
- 
            3.1.2 Addressing the Stereochemistry of Complex Molecules 
- 
            3.2 Synthetic Studies on Amphotericin B 
- 
            3.2.1 Retrosynthetic Analysis 
- 
            3.2.2 Synthetic Studies on the B1 and B2 Fragments 
- 
            3.2.3 Synthetic Studies on the B3 Fragment 
- 
            3.2.4 Synthetic Studies on the A2 Fragment 
- 
            3.2.5 Synthesis of the B Fragment (B1B2 + B3) 
- 
            3.2.6 Synthesis of the A Fragment (A2 + Polyene) 
- 
            3.2.7 Assembly of the A and B Fragments and Glycosidation 
- 
            4 Conclusion 
Key words
amphotericin B - antifungal agents - macrolides - asymmetric synthesis - bioorganic chemistry
- 1 
             
            Strohl WR. In Biotechnology of AntibioticsStrohl WR. Marcel Dekker Inc.; New York/Basel: 1997. p.1-47Reference Ris Wihthout Link
- 2 
             
            Walsh CT.Wright G. Chem. Rev. 2005, 105: 391
- 4a 
             
            Lo MM.-C.Neumann CS.Nagayama S.Perlstein EO.Schreiber SL. J. Am. Chem. Soc. 2004, 126: 16077
- 4b 
             
            Ramon DJ.Yus M. Angew. Chem. Int. Ed. 2005, 44: 1602
- 5a 
             
            Li X.Liu DR. Angew. Chem. Int. Ed. 2004, 43: 4848
- 5b 
             
            Gartner ZJ.Tse BN.Grubina R.Doyon JB.Snyder TM.Liu DR. Science 2004, 305: 1601
- 5c 
             
            Halpin DR.Harbury PB. PLoS Biol. 2004, 2: 1015
- 5d 
             
            Halpin DR.Harbury PB. PLoS Biol. 2004, 2: 1022
- 5e 
             
            Halpin DR.Lee JA.Wrenn SJ.Harbury PB. PLoS Biol. 2004, 2: 1031
- 6a 
             
            Schreiber SL. Science 2000, 287: 1964
- 6b 
             
            Strausberg RL.Schreiber SL. Science 2003, 300: 294
- 6c 
             
            Burke MD.Schreiber SL. Angew. Chem. Int. Ed. 2004, 43: 46
- 7 
             
            Corey EJ.Cheng X.-M. The Logic of Chemical Synthesis Wiley; New York: 1989.Reference Ris Wihthout Link
- 8a 
             
            Cane DE.Walsh CT.Khosla C. Science 1998, 282: 63
- 8b 
             
            Reeves CD. Crit. Rev. Biotech. 2003, 23: 95
- 8c 
             
            Hopwood DA. PLoS Biology 2004, 2: 166
- 9 
             
            Hopwood DA.Malpartida F.Kieser HM.Ikeda H.Duncan J.Fujii I.Rudd BAM.Floss HG.Omura S. Nature 1985, 314: 642
- 10 
             
            McDaniel R.Ebert-Khosla S.Hopwood DA.Khosla C. Science 1993, 262: 1546
- 11 
             
            Rosamond J.Allsop A. Science 2000, 287: 1973
- 12a 
             
            Brown ED.Wright GD. Chem. Rev. 2005, 105: 759
- 12b 
             
            Desnottes J.-F. Trends Biotechnol. 1996, 14: 134
- 13a 
             
            Schena M.Shalon D.Davis RW.Brown PO. Science 1995, 270: 467
- 13b 
             
            DeRisi JL.Iyer VR.Brown PO. Science 1997, 278: 680
- 14 
             
            Marton MJ.DeRisi JL.Bennett HA.Iyer VR.Meyer MR.Roberts CJ.Stoughton R.Burchard J.Slade D.Dai H.Bassett DE.Hartwell LH.Brown PO.Friend SH. Nat. Med. 1998, 4: 1293
- For the strain isolation:
- 15a 
             
            Sternberg TH.Wright ET.Oura M. Antibiot. Annu. 1956, 566
- 15b 
             
            Sternberg TH.Jambor WP.Suydam LO. Antibiot. Annu. 1956, 574
- 15c 
             
            Gold W.Stout HA.Pagano JF.Donovik R. Antibiot. Annu. 1956, 579
- 15d 
             
            Vandeputte J.Wachtel JL.Stiller ET. Antibiot. Annu. 1956, 587
- For amphotericin B isolation:
- 15e  
            Dutcher JD,Gold W,Pagano JF, andVandepatte J. inventors; US Patent 2908611.
- See also:
- 15f 
             
            Lemke A.Kiderlen AF.Kayser O. Appl. Microbiol. Biotechnol. 2005, 68: 151
- 16 
             
            Challis GL.Hopwood DA. Proc. Natl. Acad. Sci. U.S.A. 2003, 100: 14555
- 17 
             
            Trejo W.Bennett R. J. Bacteriol. 1962, 85: 436 ; It is worth reminding that the ability to biosynthesize a certain antibiotic is characteristic not of microbial genera, not even of species, but of strains or races within a given species. Trejo and Bennet first officially characterized S. nodosus according to the International Code of Nomenclature of Bacteria and Viruses, thus providing the full name Streptomyces nodosus Trejo (= M 4575 = ATCC 14899)
- 18 
             Macrolide Antibiotics, Chemistry, Biology and Practice  
             
            Omura S. Academic Press; New York: 1984. p.2002Reference Ris Wihthout Link
- 20a 
             
            Hazen EL.Brown R. Science 1950, 112: 423
- 20b 
             
            Brown R.Hazen EL.Mason A. Science 1953, 117: 609
- 21a 
             
            Ng AWK.Wasan KM.Lopez-Berestein G. J. Pharm. Pharmaceut. Sci. 2003, 6: 67
- 21b 
             
            Hartsel S.Bolard J. Trends Pharmacol. Sci. 1996, 17: 445
- 22 
             
            Hay RJ. In Recent Advances in the Chemistry of Anti-infective AgentsBentley PH.Ponsdorf R. Royal Society of Chemistry; Cambridge (UK): 1993. p.163-181Reference Ris Wihthout Link
- 23 
             
            Ellis D. J. Antimicrob. Chemother. 2002, 49 Suppl. S1: 7
- 24 
             
            Idemoyr V. J. Natl. Med. Assoc. 2003, 95: 1211
- 25a 
             
            Cope A.Axen U.Burrows EP.Weinlich J. J. Am. Chem. Soc. 1966, 88: 4228
- 25b 
             
            Borowski E.Mechlinski W.Falkowski L.Ziminski T.Dutcher JD. Tetrahedron Lett. 1965, 6: 473
- 25c 
             
            Borowski E.Zielinski J.Ziminski T.Falkowski L.Kododziejczyk P.Golik J.Jereczek E.Adlercreutz H. Tetrahedron Lett. 1970, 11: 3909
- 26a 
             
            Mechlinski W.Schaffner CP. Tetrahedron Lett. 1970, 11: 3873
- 26b 
             
            Ganis P.Avitabile G.Mechlinski W. J. Am. Chem. Soc. 1971, 93: 4560
- 27 
             
            Woodward RB. Angew. Chem. 1957, 69: 50
- 28a  
            Gilman, A. G. Nobel Lecture 1994. Reference Ris Wihthout Link
- 28b  
            Rodbell, M. Nobel Lecture 1994. Reference Ris Wihthout Link
- 29 
             
            Singer SJ.Nicolson GL. Science 1972, 175: 720. As stated by Singer: ‘This particular paper was the culmination of our ideas and experiments going back about 10 years’ (Citation Classics 1977, 46, 223)
- 30 
             
            Gottlieb D.Carter HE.Sloneker JH.Ammann A. Science 1958, 128: 361
- 31 
             
            Gottlieb D. Phytopathology 1961, 51: 321
- 32 
             
            Marini F.Arnow PM.Lampen JO. J. Gen. Microbiol. 1961, 24: 51
- 33 
             
            Lampen JO.Arnow PM.Borowska Z.Laskin AI. J. Bacteriol. 1962, 84: 1152
- 34 
             
            Kinsky SC. Proc. Natl. Acad. Sci. U.S.A. 1962, 48: 1049
- 35a 
             
            Kinsky SC.Luse SA.Van Deenen LLM. Fed. Proc. 1966, 25: 1503
- For the surface pressure measurement, see:
- 35b 
             
            Demel RA.Van Deenen LLM.Kinsky SC. J. Biol. Chem. 1965, 240: 2749
- 36a 
             
            Andreoli TE.Monahan M. J. Gen. Physiol. 1968, 52: 300
- 36b 
             
            Andreoli TE.Dennis VW.Weigl AM. J. Gen. Physiol. 1969, 53: 133
- 36c 
             
            Andreoli TE. Ann. N. Y. Acad. Sci. 1974, 235: 448
- 37a 
             
            Finkelstein A.Holz R. In MembranesEisenman G. Marcel Dekker; New York: 1973. p.377
- 37b 
             
            Marty A.Finkelstein A. J. Gen. Physiol. 1975, 65: 515
- 37c 
             
            Holz RW. Ann. N. Y. Acad. Sci. 1974, 235: 469
- 38a 
             
            Cass A.Finkelstein A.Krespi V. J. Gen. Physiol. 1970, 56: 100
- 38b 
             
            Holz R.Finkelstein A. J. Gen. Physiol. 1970, 56: 125 ; This latter paper also critically assesses the data fournished by Andreoli and co-workers in ref. 36b
- 39a 
             
            Hsuchen C.-C.Feingold DS. Antimicrob. Agents Chemother. 1973, 4: 309
- 39b 
             
            Hsuchen C.-C.Feingold DS. Biochem. Biophys. Res. Commun. 1973, 51: 972
- 40a 
             
            De Kruijff B.Gerritsen WJ.Oerlemans A.Demel RA.van Deenen LLM. Biochim. Biophys. Acta 1974, 339: 30
- 40b 
             
            De Kruijff B.Gerritsen WJ.Oerlemans A.van Dijck PWM.Demel RA.van Deenen LLM. Biochim. Biophys. Acta 1974, 339: 44
- 40c 
             
            De Kruijff B.Demel RA. Biochim. Biophys. Acta 1974, 339: 57
- 41 
             
            McElhaney RN. Biochim. Biophys. Acta 1984, 779: 1
- 42a 
             
            Norman AW.Demel RA.De Kruijff B.van Deenen LLM. J. Biol. Chem. 1972, 247: 1918
- 42b 
             
            Norman AW.Demel RA.De Kruijff B.Geurts van Kessel WSM.van Deenen LLM. Biochim. Biophys. Acta 1972, 290: 1
- 43 
             
            Van Hoogevest P.De Kruijff B. Biochim. Biophys. Acta 1978, 511: 397
- 44 
             
            Kleinberg ME.Finkelstein A. J. Membr. Biol. 1984, 80: 257
- 45a 
             
            Bolard J.Vertut-Croquin A.Cybulska BE.Gary-Bobo CM. Biochim. Biophys. Acta 1981, 647: 241
- 45b 
             
            Bolard J.Legrand P.Heitz F.Cybulska B. Biochemistry 1991, 30: 5707
- 46 
             
            Hartsel SC.Benz SK.Peterson RP.Whyte BS. Biochemistry 1991, 30: 77
- 47 
             
            Zumbuehl A.Stano P.Heer D.Walde P.Carreira EM. Org. Lett. 2004, 6: 3683
- POPC = palmitoyl-oleyl-phosphatidylcholine; LUVET100 = large unilamellar vesicles whose mean diameter amounts to 100 nm; prepared using the extrusion technique.
- 48a 
             
            Walde P. In Encyclopedia of Nanoscience and Nanotechnology Vol. 9:Nalwa HS. American Scientific Publishers; Los Angeles: 2004. p.43Reference Ris Wihthout Link
- 48b 
             
            Lichtenberg D. In Biomembranes. Physical AspectsShinitzky M. VCH Publishers Inc.; New York: 1993. p.63Reference Ris Wihthout Link
- 48c 
             
            Chapman D. In Biomembranes. Physical AspectsShinitzky M. VCH Publishers Inc.; New York: 1993. p.29Reference Ris Wihthout Link
- 50 
             
            Baginski M.Resat H.McCammon JA. Mol. Pharmacol. 1997, 52: 560
- 51 
             
            Okamoto Y.Aoki S.Mataga I. Mycopathol. 2004, 158: 9
- 52 
             
            Warn PA.Sharp A.Guinea J.Denning DW. J. Antimicrob. Chemother. 2004, 53: 743
- 53a 
             
            Cleary JD.Chapman SW.Nolan RL. Antimicrob. Agents Chemother. 1992, 36: 977
- 53b 
             
            Sau K.Mambula SS.Latz E.Henneke P.Golenbock DT.Levitz SM. J. Biol. Chem. 2003, 278: 37561
- 54 
             
            Schaffner CP.Borowski E. Antibiot. Chemother. 1961, 11: 724
- 55 
             
            Chéron M.Cybulska B.Mazerski J.Grzybowska J.Czerwinski A.Borowski E. Biochem. Pharmacol. 1988, 37: 827
- 56a 
             
            Selassie CD. In Burger’s Medicinal Chemistry and Drug Discovery Vol. 1:Abraham DJ. John Wiley & Sons; New York: 2003.
- 56b 
             
            Free SM.Wilson JW. J. Med. Chem. 1964, 7: 395
- 57 
             
            Lechevalier H.Borowski E.Lampen JO.Schaffner CP. Antibiot. Chemother. 1961, 11: 640
- See also:
- 58a 
             
            Czerwinski A.Zieniawa T.Borowski E.Micossi LG. J. Antibiot. 1990, 43: 680
- 58b 
             
            Grzybowska J.Borowski E. J. Antibiot. 1990, 43: 907
- For previous and later results, see also:
- 59a 
             
            Jarzebski A.Falkowski L.Borowski E. J. Antibiot. 1982, 35: 220
- 59b 
             
            Czerwinski A.Grzybowska J.Borowski E. J. Antibiot. 1986, 39: 1025
- 59c 
             
            Czerwinski A.König WA.Zieniawa T.Sowinski P.Sinnwell V.Milewski S.Borowski E. J. Antibiot. 1991, 44: 979
- See also the work by other groups:
- 59d 
             
            Wright KJJ.Albarella JA.Krepski LR.Loenbenberg D. J. Antibiot. 1982, 35: 911
- 59e 
             
            Parmegiani RM.Loenberg D.Antonacci B.Yarosh-Tomaine T.Scupp R.Wright JJ.Chiu PJS.Miller GH. Antimicrob. Agents Chemother. 1987, 31: 1756
- 59f 
             
            Hoeprich PD.Flynn NM.Kawachi MM.Lee KK.Lawrence RM.Heath LK.Schaffner CP. Ann. N. Y. Acad. Sci. 1988, 544: 517
- 60 
             
            Mechlinski W.Schaffner CP. J. Antibiot. 1972, 25: 256
- 61 
             
            Taylor AW.Costello BJ.Hunter PA.MacLachlan WS.Shanks CT. J. Antibiot. 1993, 46: 486
- 62 
             
            MacPherson DT.Corbett DF.Costello BJ.Driver MJ.Greenlees AR.MacLachlan WS.Shanks CT.Taylor AW. In Recent Advances in the Chemistry of Anti-infective AgentsBentley PH.Ponsford R. Royal Society of Chemistry; Cambridge (UK): 1993. p.205-222Reference Ris Wihthout Link
- 63 
             
            Zumbuehl A.Jeannerat D.Martin SE.Sohrmann M.Stano P.Vigassy T.Clark DD.Hussey SL.Peter M.Peterson BR.Pretsch E.Walde P.Carreira EM. Angew. Chem. Int. Ed. 2004, 43: 5181
- 64 
             
            Nicolaou KC.Chakraborty TK.Daines RA.Simpkins NS. J. Chem. Soc., Chem. Commun. 1986, 413
- 65 
             
            Gilman S.Grieco PA.Nishizawa M. J. Org. Chem. 1976, 41: 1485Reference Ris Wihthout Link
- 66 
             
            Kennedy RM.Abiko A.Masamune S. Tetrahedron Lett. 1988, 29: 447
- 67 
             
            Nicolaou KC.Chakraborty TK.Daines RA.Simpkins NS. J. Chem. Soc., Chem. Commun. 1987, 686
- 68 
             
            Driver MJ.Greenlees AR.MacPherson DT. J. Chem. Soc., Perkin Trans. 1 1992, 3155
- 69 
             
            Nicolaou KC.Chakraborty TK.Ogawa Y.Daines RA.Simpkins NS.Furst GT. J. Am. Chem. Soc. 1988, 110: 4660
- 70 
             
            Carpino LA.Han GY. J. Am. Chem. Soc. 1976, 92: 5748
- 71 
             
            Driver MJ.Greenlees AR.MacLachlan WS.MacPherson DT.Taylor AW. Tetrahedron Lett. 1992, 33: 4357
- 72 
             
            Corbett DF.Dean DK.Greenlees AR.MacPherson DT. J. Antibiot. 1995, 48: 509
- 73 For an account of this group’s recent work in the field of macrolide polyenes, see:
             
            Kadota I.Hu Y.Packard GK.Rychnovsky SD. Proc. Nat. Acad. Sci. U.S.A. 2004, 101: 11992
- 74 
             
            Rogers BN.Selsted ME.Rychnovsky SD. Bioorg. Med. Chem. Lett. 1997, 7: 3177
- 75 
             
            Takai K.Nitta K.Utimoto K. J. Am. Chem. Soc. 1986, 10: 7408
- 76 
             
            Sonogashira K. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. p.203Reference Ris Wihthout Link
- 77 
             
            McNamara CM.Box S.Crawforth JM.Hickman BS.Norwood TJ.Rawlings BJ. J. Chem. Soc., Perkin Trans. 1 1998, 83
- 78 
             
            Caffrey P.Lynch S.Flood E.Finnan S.Oliynyk M. Chem. Biol. 2001, 8: 713
- 79 
             
            Byrne B.Carmody M.Gibson E.Rawlings B.Caffrey P. Chem. Biol. 2003, 10: 1215
- 80 
             
            Carmody M.Byrne B.Murphy B.Breen C.Lynch S.Flood E.Finnan S.Caffrey P. Gene 2004, 343: 107
- 81 
             
            Beau J.-M. In Recent Progress in the Chemical Synthesis of AntibioticsLukacs G.Ohno M. Springer-Verlag; Berlin/Heidelberg: 1990. p.135-182Reference Ris Wihthout Link
- 82 
             
            Masamune S.Bates GS.Corcoran JW. Angew. Chem., Int. Ed. Engl. 1977, 16: 585
- 83 
             
            Nicolaou KC. Tetrahedron 1977, 33: 683
- 84 Quoted from:  
            Ganesan A. Pure Appl. Chem. 2001, 73: 1033
- 85 
             
            Corey EJ.Trybulski EJ.Melvin LS.Nicolaou KC.Secrist JA.Lett R.Sheldrake PW.Falck JR.Brunelle DJ.Haslanger MF.Kim S.Yoo S.-e. J. Am. Chem. Soc. 1978, 100: 4618
- 86 See, for example, the very entertaining account:  
            Perkin WH. J. Chem. Soc. 1929, 1347
- The common title to these articles is ‘Zur Kenntnis des Kohlenstoffringes.’ See for instance:
- 87a 
             
            Ruzicka L. Helv. Chim. Acta 1926, 9: 230
- 87b 
             
            Ruzicka L.Stoll M.Schinz H. Helv. Chim. Acta 1926, 9: 249
- 87c 
             
            Ruzicka L.Brugger W. Helv. Chim. Acta 1926, 9: 339
- 87d 
             
            Ruzicka L.Brugger W. Helv. Chim. Acta 1926, 9: 389
- 87e 
             
            Ruzicka L.Brugger W. Helv. Chim. Acta 1926, 9: 399
- 87f 
             
            Ruzicka L.Brugger W.Pfeiffer M.Stoll M.Schinz H. Helv. Chim. Acta 1926, 9: 499
- 87g 
             
            Ruzicka L. Helv. Chim. Acta 1926, 9: 715
- 87h 
             
            Ruzicka L. Helv. Chim. Acta 1926, 9: 1008
- 87i 
             
            Ruzicka L.Stoll M. Helv. Chim. Acta 1928, 11: 1159
- 88 
             
            Baeyer A.Villiger V. Ber. Dtsch. Chem. Ges. 1899, 32: 3625
- 89 
             
            Ziegler K.Eberle H.Ohlinger H. Justus Liebigs Ann. Chem. 1933, 504: 94
- 90a 
             
            Ruggli P. Justus Liebigs Ann. Chem. 1912, 392: 92
- 91a 
             
            Stoll M.Rouvé A. Helv. Chim. Acta 1934, 17: 1283
- 91b 
             
            Stoll M.Rouvé A.Stoll-Comte G. Helv. Chim. Acta 1934, 17: 1289
- 91c 
             
            Davies AG.Davies M.Stoll M. Helv. Chim. Acta 1954, 37: 1351
- 92a 
             
            Bennett GM. Trans. Faraday Soc. 1941, 37: 794
- 92b 
             
            Galli C.Illuminati G.Mandolini L. J. Am. Chem. Soc. 1973, 95: 8374
- 93a 
             
            Baldwin JE. J. Chem. Soc., Chem. Commun. 1976, 734
- 93b 
             
            Baldwin JE.Cutting J.Dupont W.Kruse L.Silberman L.Thomas RC. J. Chem. Soc., Chem. Commun. 1976, 736
- 93c 
             
            Baldwin JE. J. Chem. Soc., Chem. Commun. 1976, 738
- 93d 
             
            Baldwin JE.Thomas RC.Kruse LI.Silberman L. J. Org. Chem. 1977, 42: 3846
- 94a 
             
            Grob CA.Schiess PW. Angew. Chem., Int. Ed. Engl. 1967, 6: 1
- 94b 
             
            Grob CA. Angew. Chem., Int. Ed. Engl. 1969, 8: 535
- 95a 
             
            Eschenmoser A.Frey A. Helv. Chim. Acta 1952, 35: 1660
- 95b 
             
            Felix D.Schreiber J.Ohloff G.Eschenmoser A. Helv. Chim. Acta 1971, 54: 2896
- See also the work by Tanabe:
- 95c 
             
            Tanabe M.Crowe DF.Dehn RL. Tetrahedron Lett. 1967, 40: 3943
- 95d 
             
            Tanabe M.Crowe DF.Dehn RL.Detre G. Tetrahedron Lett. 1967, 40: 3739
- 96a 
             
            Grob CA.Baumann W. Helv. Chim. Acta 1955, 38: 594
- 96b 
             
            Grob CA.Kiefer HR.Lutz H.Wilkens H. Tetrahedron Lett. 1964, 39: 2901
- 97 
             
            Stork G.Landesman HK. J. Am. Chem. Soc. 1956, 78: 5129
- 98a 
             
            Wharton PS. J. Org. Chem. 1961, 26: 4781
- 98b 
             
            Wharton PS.Sumi Y.Kretchmer RA. J. Org. Chem. 1965, 30: 234
- 98c 
             
            Wharton PS.Hiegel GA. J. Org. Chem. 1965, 30: 3254
- 99a 
             
            Marshall JA.Bundy GL. J. Am. Chem. Soc. 1966, 88: 4291
- 99b 
             
            Marshall JA.Babler JH. Tetrahedron Lett. 1970, 44: 3861
- 100a 
             
            Corey EJ.Mitra RB.Uda H. J. Am. Chem. Soc. 1963, 85: 362
- 100b 
             
            Corey EJ.Mitra RB.Uda H. J. Am. Chem. Soc. 1964, 86: 485
- 101a 
             
            Borowitz IJ.Gonis G. Tetrahedron Lett. 1964, 19: 1151
- 101b 
             
            Borowitz IJ.Gonis G.Kelsey R.Rapp R.Williams GJ. J. Org. Chem. 1966, 31: 3032
- 102 See, for example:  
            Sternbach D.Shibuya M.Jaisli F.Bonetti M.Eschenmoser A. Angew. Chem., Int. Ed. Engl. 1979, 18: 634
- 103 
             
            Taub D.Girotra NN.Hoffsommer RD.Kuo CH.Slates HL.Weber S.Wendler NL. Tetrahedron 1968, 24: 2441
- 104 
             
            Colvin EW.Purcell TA.Raphael RA. J. Chem. Soc., Chem. Commun. 1972, 1031
- 105a 
             
            Staab HA. Chem. Ber. 1957, 90: 1326
- 105b 
             
            Staab HA.Mannschreck A. Chem. Ber. 1962, 95: 1284
- 106 
             
            Corey EJ.Nicolaou KC. J. Am. Chem. Soc. 1974, 96: 5614
- 107 
             
            Mukaiyama T.Matsueda R.Suzuki M. Tetrahedron Lett. 1970, 22: 1901
- 108 
             
            Masamune S.Kamata S.Schilling W. J. Am. Chem. Soc. 1975, 97: 3515
- 109a 
             
            Masamune S.Kim CU.Wilson KE.Spessard GO.Georghiou PE.Bates GS. J. Am. Chem. Soc. 1975, 97: 3512
- 109b 
             
            Masamune S.Yamamoto H.Kamata S.Fukuzawa A. J. Am. Chem. Soc. 1975, 97: 3513
- 110 
             
            Mukaiyama T.Usui M.Saigo K. Chem. Lett. 1976, 49
- 111a 
             
            Gerlach H.Wetter H. Helv. Chim. Acta 1974, 57: 2306
- 111b 
             
            Gerlach H.Oertle K.Thalmann A.Servi S. Helv. Chim. Acta 1975, 58: 2036
- 112 We may want to recall that metal-templated ring closure had been used by the Eschenmoser
            group to form the corrin ring in the context of the vitamin B12 synthesis. For an account, see:  
            Eschenmoser A. Pure Appl. Chem. 1969, 20: 1
- 113 
             
            Inanaga J.Hirata K.Saeki H.Katsuki T.Yamaguchi M. Bull. Chem. Soc. Jpn. 1979, 52: 1989
- 114 
             
            Corey EJ.Kirst HA. J. Am. Chem. Soc. 1972, 94: 667
- 115a 
             
            Corey EJ.Hamanaka E. J. Am. Chem. Soc. 1964, 86: 1641
- 115b 
             
            Corey EJ.Hamanaka E. J. Am. Chem. Soc. 1967, 89: 2758
- 116 
             
            Burri KF.Cardone RA.Chen WY.Rosen P. J. Am. Chem. Soc. 1978, 100: 7069
- 117 
             
            Stork G.Nakamura E. J. Am. Chem. Soc. 1979, 44: 4010
- 118 
             
            Nicolaou KC.Seitz SP.Pavia MR.Petasis NA. J. Am. Chem. Soc. 1979, 44: 4011
- 119 
             
            Floyd DM.Fritz AW. Tetrahedron Lett. 1981, 22: 2947
- 120 
             
            Prunet J. Angew. Chem. Int. Ed. 2003, 42: 2826Reference Ris Wihthout Link
- 121 
             
            Weidmann B.Seebach D. Helv. Chim. Acta 1980, 63: 2451
- 122 
             
            Narasaka K.Pai FC. Tetrahedron 1984, 40: 2233
- 123a 
             
            Chen K.-M.Hardtmann GE.Prasad K.Repic O.Shapiro MJ. Tetrahedron Lett. 1987, 28: 155
- 123b 
             
            Sletzinger M.Verhoeven TR.Volante RP.McNamara JM.Corley EG.Liu TMH. Tetrahedron Lett. 1985, 26: 2951
- 124 
             
            Evans DA.Chapman KT.Carreira EM. J. Am. Chem. Soc. 1988, 110: 3560
- 125a 
             
            Evans DA.Nelson JV.Taber TR. Top. Stereochem. 1982, 13: 1
- 125b 
             
            Heathcock CH. In Comprehensive Organic Synthesis, Vol. 2Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.133-179
- 125c 
             
            Heathcock CH. In Comprehensive Organic Synthesis, Vol. 2Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.181-238
- 125d 
             
            Kim BM.Williams SF.Masamune S. In Comprehensive Organic Synthesis, Vol. 2Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.239
- 126a 
             
            Paterson I.Goodman JM. Tetrahedron Lett. 1989, 30: 997
- 126b 
             
            Paterson I.Goodman JM.Lister MA.Schumann RC.McKlure CK.Norcross RD. Tetrahedron 1990, 46: 4663
- 127a 
             
            Mikami K.Matsukawa S. J. Am. Chem. Soc. 1994, 116: 4077
- 127b 
             
            Carreira EM.Singer RA.Lee W. J. Am. Chem. Soc. 1994, 116: 8837
- The reaction is commonly referred to as the Fráter-Seebach reaction. See:
- 128a 
             
            Fráter G. Helv. Chim. Acta 1979, 62: 2825
- 128b 
             
            Fráter G. Helv. Chim. Acta 1979, 62: 2829
- 128c 
             
            Seebach D.Wasmuth D. Helv. Chim. Acta 1980, 63: 197
- For a similar use of β-hydroxy esters but not in the context of alkylations, see:
- 128d 
             
            Kraus GA.Taschner MJ. Tetrahedron Lett. 1977, 52: 4575
- 129 
             
            Finan JM.Kishi Y. Tetrahedron Lett. 1982, 23: 2719
- 130 
             
            Ma P.Martin VS.Masamune S.Sharpless KB.Viti SM. J. Org. Chem. 1982, 47: 1378
- 131 
             
            Nicolaou KC.Uenishi J. J. Chem. Soc., Chem. Commun. 1982, 1292
- 132a 
             
            Katsuki T.Sharpless KB. J. Am. Chem. Soc. 1980, 102: 5974
- 132b 
             
            Rossiter BE.Katsuki T.Sharpless KB. J. Am. Chem. Soc. 1981, 103: 464
- An alternative to epoxidation followed by ring-opening is the regioselective hydroboration of allylic alcohols. However, this method has not been used in the context of 1,3-polyol systems, but rather to access primary alcohols via hydroboration (9-BBN) of terminal olefins. See, for example:
- 133a 
             
            Kim H.Choi WJ.Jung J.Kim S.Kim D. J. Am. Chem. Soc. 2003, 125: 10238
- 133b 
             
            Buszek KR.Sato N.Jeong Y. Tetrahedron Lett. 2002, 43: 181
- See also the hydroboration of vinyl ethers by McGarvey:
- 133c 
             
            McGarvey GJ.Bajwa JS. Tetrahedron Lett. 1985, 26: 6297
- See, for example:
- 134a 
             
            Solladié G.Demailly G.Greck C. Tetrahedron Lett. 1985, 26: 435
- 134b 
             
            Solladié G.Demailly G.Greck C. J. Org. Chem. 1985, 50: 1552
- 135 
             
            Curran DP. J. Am. Chem. Soc. 1982, 104: 4024
- 136a 
             
            Kanemasa S.Kobayashi S.Nishiuchi M.Yamamoto H.Wada E. Tetrahedron Lett. 1991, 32: 6367
- 136b 
             
            Kanemasa S.Nishiuchi M.Wada E. Tetrahedron Lett. 1992, 33: 1357
- 136c 
             
            Kanemasa S.Nishiuchi M.Kamimura A.Hori K. J. Am. Chem. Soc. 1994, 116: 2324
- 136d 
             
            Bode JW.Fraefel N.Muri D.Carreira EM. Angew. Chem. Int. Ed. 2001, 40: 2082
- 137a 
             
            Evans DA.Gauchet-Prunet JA. J. Org. Chem. 1993, 58: 2446
- 137b 
             
            Evans DA.Connell BT. J. Am. Chem. Soc. 2003, 125: 10899
- 138 
             
            Hirama M.Uei M. Tetrahedron Lett. 1982, 23: 5307
- 139 
             
            Barton DHR.McCombie SW. J. Chem. Soc., Perkin Trans. 1 1975, 1574
- 140a 
             
            Hanessian S.Murray PJ.Sahoo SP. Tetrahedron Lett. 1985, 26: 5623
- 140b 
             
            Hanessian S.Murray PJ.Sahoo SP. Tetrahedron Lett. 1985, 26: 5627
- 140c 
             
            Hanessian S.Murray PJ.Sahoo SP. Tetrahedron Lett. 1985, 26: 5631
- 141 
             
            Vigneron JP.Méric R.Larchevêque M.Debal A.Lallemand JY.Kunesch G.Zagatti P.Gallois M. Tetrahedron 1984, 40: 3521
- 142a 
             
            McGarvey GJ.Hiner RN.Matsubara Y.Oh T. Tetrahedron Lett. 1983, 24: 2733
- 142b 
             
            Overly KR.Williams JM.McGarvey GJ. Tetrahedron Lett. 1990, 31: 4573
- 142c 
             
            McGarvey GJ.Wilson KJ.Shanholtz CE. Tetrahedron Lett. 1992, 33: 2641
- 143 
             
            Lipshutz BH.Kozlowski JA. J. Org. Chem. 1984, 49: 1147
- 144a 
             
            Masamune S.Kaiho T.Garvey DS. J. Am. Chem. Soc. 1982, 104: 5521
- 144b 
             
            Boschelli D.Ellingboe JW.Masamune S. Tetrahedron Lett. 1984, 25: 3395
- 144c 
             
            Masamune S.Ma P.Okumoto H.Ellingboe JW.Ito Y. J. Org. Chem. 1984, 49: 2834
- 144d 
             
            Boschelli D.Takemasa T.Nishitani Y.Masamune S. Tetrahedron Lett. 1985, 26: 5239
- 144e 
             
            Kennedy RM.Abiko A.Takemasa T.Okumoto H.Masamune S. Tetrahedron Lett. 1988, 29: 451
- 145a 
             
            Nicolaou KC.Daines RA.Uenishi J.Li WS.Papahatijs DP.Chakraborty TK. J. Am. Chem. Soc. 1988, 110: 4672
- 145b 
             
            Nicolaou KC.Daines RA.Chakraborty TK.Ogawa Y. J. Am. Chem. Soc. 1988, 110: 4685
- 145c 
             
            Nicolaou KC.Daines RA.Ogawa Y.Chakraborty TK. J. Am. Chem. Soc. 1988, 110: 4696
- 146a 
             
            McGarvey GJ.Williams JM.Hiner RN.Matsubara Y.Oh T. J. Am. Chem. Soc. 1986, 108: 4943
- 146b 
             
            McGarvey GJ.Mathys JA.Wilson KJ.Overly KR.Buonora PT.Spoors PG. J. Org. Chem. 1995, 60: 7778
- 146c 
             
            McGarvey GJ.Mathys JA.Wilson KJ. J. Org. Chem. 1996, 61: 5704
- See also the synthetic studies on the polyene synthesis:
- 146d 
             
            Williams JM.McGarvey GJ. Tetrahedron Lett. 1985, 26: 4891
- 148a 
             
            Hanessian S.Sahoo SP.Botta M. Tetrahedron Lett. 1987, 28: 1143
- 148b 
             
            Hanessian S.Sahoo SP.Botta M. Tetrahedron Lett. 1987, 28: 1147
- 148c 
             
            Hanessian S.Botta M. Tetrahedron Lett. 1987, 28: 1151
- 149 
             
            Solladié G.Hutt J. Tetrahedron Lett. 1987, 28: 797
- 150a 
             
            Liang D.Pauls HW.Fraser-Reid B. Can. J. Chem. 1986, 64: 1800
- 150b 
             
            Liang D.DeCamp Schuda A.Fraser-Reid B. Carbohydr. Res. 1987, 164: 229
- 151 
             
            Krüger J.Carreira EM. J. Am. Chem. Soc. 1998, 120: 837
- 152 
             
            Pagenkopf BL.Krüger J.Stojanovic A.Carreira EM. Angew. Chem. Int. Ed. 1998, 37: 3124
- 153 
             
            Krüger J.Carreira EM. Tetrahedron Lett. 1998, 39: 7013
- 154 
             
            Clemens RJ.Hyatt JA. J. Org. Chem. 1985, 50: 2431
- 155a 
             
            Müller S.Liepold B.Roth GJ.Bestmann HJ. Synlett 1996, 521
- 155b 
             
            Ohira S. Synth. Commun. 1989, 19: 561
- 156a 
             
            Frigerio M.Santagostino M.Sputore S. J. Org. Chem. 1999, 64: 4537
- 156b 
             
            Meyer SD.Schreiber SL. J. Org. Chem. 1994, 59: 7549
- 156c 
             
            Ireland RE.Liu L. J. Org. Chem. 1993, 58: 2899
- 157a 
             
            BouzBouz S.Cossy J. Org. Lett. 2000, 2: 3975
- Recent reports by Carreira involving Zn-mediated addition reactions of terminal alkynes and aldehydes are relevant to this bond-construction strategy, see:
- 157b 
             
            Frantz DE.Fassler R.Carreira EM. J. Am. Chem. Soc. 2000, 122: 1806
- 157c 
             
            Frantz DE.Fässler R.Tomooka CS.Carreira EM. Acc. Chem. Res. 2000, 33: 373
- 157d 
            
             
            El-Sayed E.Anand NK.Carreira EM. Org. Lett. 2001, 3: 3017
- 157e 
             
            Boyall D.Frantz DE.Carreira EM. Org. Lett. 2002, 4: 2605
- 158 
             
            Hafner A.Duthaler RO.Marti R.Rihs J.Rothe-Streit P.Schwarzenbach F. J. Am. Chem. Soc. 1992, 114: 2321
- 159 For an interesting review on meso compounds, see:  
            Hoffmann RW. Angew. Chem. Int. Ed. 2003, 42: 1096
- 160a 
             
            Bonini C.Chiummiento L.Martuscelli A.Viggiani L. Tetrahedron Lett. 2004, 45: 2177
- 160b 
             
            Bonini C.Racioppi R.Righi G.Viggiani L. J. Org. Chem. 1993, 58: 802
- 161 
             
            Nicolaou KC.Papahatjis DP.Claremon DA.Magolda RL.Dolle RE. J. Org. Chem. 1985, 50: 1440 ; In this synthesis (-)-diethyl-d-tartrate was used
- 162 
             
            Brückner R. Tetrahedron Lett. 1988, 29: 5747
- 163 
             
            Still WK.Schneider JA. Tetrahedron Lett. 1980, 21: 1035
- 164 
             
            Brooks DW.Kellogg RP. Tetrahedron Lett. 1982, 23: 4991
- 165 
             
            Tholander J.Carreira EM. Helv. Chim. Acta 2001, 84: 613
- 166a 
             
            Xu D.Crispino GA.Sharpless KB. J. Am. Chem. Soc. 1992, 114: 7570
- 166b 
             
            Becker H.Soler MA.Sharpless KB. Tetrahedron 1995, 51: 1345
- 167 
             
            Blanchette MA.Choy W.Davis JT.Essenfeld AM.Masamune S.Roush WR.Sakai T. Tetrahedron Lett. 1984, 25: 2183
- 168a 
             
            Cope AC.Nelson NA.Smith DS. J. Am. Chem. Soc. 1954, 76: 1100
- 168b 
             
            Anet R. Tetrahedron Lett. 1961, 20: 720
- 169 
             
            Wollenberg RH. Tetrahedron Lett. 1978, 8: 717
- 170 
             
            Vedejs E.Bershas JP. Tetrahedron Lett. 1975, 16: 1359
- 171a 
             
            Schmidt RR.Michel J. Angew. Chem., Int. Ed. Engl. 1980, 19: 731
- 171b 
             
            Schmidt RR.Michel J. Tetrahedron Lett. 1984, 25: 821
- For a review, see:
- 171c 
             
            Schmidt RR. Angew. Chem., Int. Ed. Engl. 1986, 25: 212
- 173 For a review, see:  
            Paulsen H. Angew. Chem., Int. Ed. Engl. 1982, 21: 155
References
This somewhat-unfortunate name indicates an ‘n-dimen-sional space defined by the value of n descriptors; these descriptors can be of a chemical or biological nature and are either computed or measured’ (see ref. 6c). It seems more appropriate to call this abstract space a QSAR- or QSPR-space where QSAR and QSPR are the more familiar (and general) acronyms for ‘quantitative structure-activity relationship’ and ‘quantitative structure-property relation-ship’, respectively (see ref. 56).
19Amphotericin A is biosynthesized along with amphotericin B and needs to be removed from the latter during purification.
49Monomers have been shown to exist below the critical self-association concentration, estimated to be 1 M. See ref. 45b.
147In a later study, epoxide 103 was accessed from the known acetonide 104 which, in turn, could be prepared from 
         l-malic acid dimethyl ester (Scheme 
         [51]
         ). See ref. 146c.
Glycoside 266 was prepared in 14 steps from the glucose derivative 268 (Scheme [52] ). The synthesis encompassed deoxygenation at C-5′ and double inversion at C-3′ in order to install the azide functionality, which after the glycosid-ation was reduced to the required amine. See ref. 145b.
 
    