Synlett 2021; 32(04): 369-372
DOI: 10.1055/a-1296-8652
cluster
Radicals – by Young Chinese Organic Chemists

C–H Alkylation of Heteroarenes with Alkyl Oxalates by Molecular Photoelectrocatalysis

Fan Xu
,
Xiao-Li Lai
,
Hai-Chao Xu
Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen 361005, P. R. of China
› Author Affiliations
Financial support of this research from the NSFC (21971213) is acknowledged.


Dedicated to Professor Ilhyong Ryu on the occasion of his 70th birthday.

Abstract

An oxidant- and metal-free photoelectrocatalytic C–H alkylation reaction of heteroarenes with alkyl oxalates has been developed. Several classes of heteroaromatics, such as quinolines, isoquinolines, pyridines, and phenanthridines, can be alkylated with tertiary or secondary alkyl oxalates. The photoelectrochemical synthesis employs 2,4,5,6-tetra-9H-carbazol-9-ylisophthalonitrile as a molecular catalyst and allows the oxidative transformations to proceed through evolution of hydrogen without a sacrificial chemical oxidant.

Supporting Information



Publication History

Received: 23 September 2020

Accepted after revision: 23 October 2020

Accepted Manuscript online:
23 October 2020

Article published online:
23 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
    • 1b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 1c Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 1d Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 1e Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
    • 1f Yuan Y, Lei A. Acc. Chem. Res. 2019; 52: 3309
    • 1g Feng R, Smith JA, Moeller KD. Acc. Chem. Res. 2017; 50: 2346
    • 1h Yang Q.-L, Fang P, Mei T.-S. Chin. J. Chem. 2018; 36: 338
    • 1i Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 1j Ye Z, Zhang F. Chin. J. Chem. 2019; 37: 513
    • 1k Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
    • 1l Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
    • 1m Siu JC, Fu N, Lin S. Acc. Chem. Res. 2020; 53: 547
    • 1n Meyer TH, Finger LH, Gandeepan P, Ackermann L. Trends Chem. 2019; 1: 63
    • 1o Jiao K.-J, Xing Y.-K, Yang Q.-L, Qiu H, Mei T.-S. Acc. Chem. Res. 2020; 53: 300
    • 1p Ackermann L. Acc. Chem. Res. 2020; 53: 84
    • 2a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 2b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 2c Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 2d Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 3a Tajima T, Kurihara H, Fuchigami T. J. Am. Chem. Soc. 2007; 129: 6680
    • 3b Xiang J, Shang M, Kawamata Y, Lundberg H, Reisberg SH, Chen M, Mykhailiuk P, Beutner G, Collins MR, Davies A, Del Bel M, Gallego GM, Spangler JE, Starr J, Yang S, Blackmond DG, Baran PS. Nature 2019; 573: 398
    • 3c Hou Z.-W, Yan H, Song J.-S, Xu H.-C. Chin. J. Chem. 2018; 36: 909
    • 3d Xu F, Long H, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 9017
  • 4 Wayner DD. M, McPhee DJ, Griller D. J. Am. Chem. Soc. 1988; 110: 132
    • 5a Barham JP, König B. Angew. Chem. Int. Ed. 2020; 59: 11732
    • 5b Yu Y, Guo P, Zhong J.-S, Yuan Y, Ye K.-Y. Org. Chem. Front. 2020; 7: 131
    • 5c Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
  • 6 Molecular photoelectrochemistry employs molecules dispersed in solution or attached to an electrode surface as a light absorber, as opposed to interfacial photoelectrochemistry, which uses semiconductor photoelectrodes. For a recent review on synthetic applications of the latter, see: Wu Y.-C, Song R.-J, Li J.-H. Org. Chem. Front. 2020; 7: 1895
    • 7a Moutet J.-C, Reverdy G. J. Chem. Soc., Chem. Commun. 1982; 654
    • 7b Chiba K, Yamaguchi Y, Tada M. Tetrahedron Lett. 1998; 39: 9035
    • 7c Scheffold R, Orlinski R. J. Am. Chem. Soc. 1983; 105: 7200
    • 8a Yan H, Hou Z.-W, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 4592
    • 8b Lai X.-L, Shu X.-M, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2020; 59: 10626
    • 8c Xu P, Chen P.-Y, Xu H.-C. Angew. Chem. Int. Ed. 2020; 59: 14275
    • 9a Wang F, Stahl SS. Angew. Chem. Int. Ed. 2019; 58: 6385
    • 9b Huang H, Strater ZM, Rauch M, Shee J, Sisto TJ, Nuckolls C, Lambert TH. Angew. Chem. Int. Ed. 2019; 58: 13318
    • 9c Huang H, Lambert TH. Angew. Chem. Int. Ed. 2020; 59: 658
    • 9d Huang H, Strater ZM, Lambert TH. J. Am. Chem. Soc. 2020; 142: 1698
    • 9e Kim H, Kim H, Lambert TH, Lin S. J. Am. Chem. Soc. 2020; 142: 2087
    • 9f Qiu Y, Scheremetjew A, Finger LH, Ackermann L. Chem. Eur. J. 2020; 26: 3241
    • 9g Zhang W, Carpenter KL, Lin S. Angew. Chem. Int. Ed. 2020; 59: 409
    • 9h Cowper NG. W, Chernowsky CP, Williams OP, Wickens ZK. J. Am. Chem. Soc. 2020; 142: 2093
    • 9i Niu L, Jiang C, Liang Y, Liu D, Bu F, Shi R, Chen H, Dutta Chowdhury A, Lei A. J. Am. Chem. Soc. 2020; 142: 17693
  • 10 Nawrat CC, Jamison CR, Slutskyy Y, MacMillan DW. C, Overman LE. J. Am. Chem. Soc. 2015; 137: 11270 ; corrigendum: J. Am. Chem. Soc. 2016, 138, 1724
    • 11a Pitre SP, Muuronen M, Fishman DA, Overman LE. ACS Catal. 2019; 9: 3413
    • 11b Zhang X.-Y, Weng W.-Z, Liang H, Yang H, Zhang B. Org. Lett. 2018; 20: 4686
  • 12 Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Angew. Chem. Int. Ed. 2020; 59: 10859

    • For examples of electrochemical Minisci-type alkylation reactions, see ref. 12 and:
    • 13a Dou G.-Y, Jiang Y.-Y, Xu K, Zeng C.-C. Org. Chem. Front. 2019; 6: 2392
    • 13b Wang Q.-Q, Xu K, Jiang Y.-Y, Liu Y.-G, Sun B.-G, Zeng C.-C. Org. Lett. 2017; 19: 5517
    • 13c O’Brien AG, Maruyama A, Inokuma Y, Fujita M, Baran PS, Blackmond DG. Angew. Chem. Int. Ed. 2014; 53: 11868
    • 13d Ding H, Xu K, Zeng C.-C. J. Catal 2020; 381: 38
  • 14 Luo J, Zhang J. ACS Catal. 2016; 6: 873
  • 15 Photoelectrochemical Alkylation of Hetarenes; General Procedure A 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged with the appropriate hetarene (0.2 mmol, 1.0 equiv) and oxalate (0.6 mmol, 3.0 equiv), together with 4CzIPN (0.002 mmol, 1 mol%), Et4NPF6 (0.04 mmol, 0.2 equiv), and MeCN (6 mL). The Schlenk tube was equipped with a reticulated vitreous carbon (100 PPI) anode (0.5 × 1.5 × 1.2 cm) and a platinum plate (1 × 1 cm) cathode. The reaction mixture was bubbled with argon for 15 min and then TFA (0.2 mmol, 1 equiv) was added. LEDs (λ = 455 nm, 20 W) were placed 2 cm to the side of the reactor, and the reaction was carried out with a constant current of 2 mA at about 50 °C (internal temperature) until the substrate was completely consumed (TLC or 1H NMR). The reaction was then quenched with sat. aq NaHCO3, and the aqueous layer was extracted with EtOAc (3 × 10 mL). The organic extracts were combined and concentrated under reduced pressure. The residue was purified by chromatography (silica gel, EtOAc–hexanes).
  • 16 2-Cyclohexyl-4-methylquinoline (3) Colorless oil; yield: 34 mg (76%). 1H NMR (600 MHz, CDCl3): δ = 8.07 (d, J = 8.3 Hz, 1 H), 7.95 (d, J = 8.1 Hz, 1 H), 7.74–7.65 (m, 1 H), 7.57–7.46 (m, 1 H), 7.18 (s, 1 H), 2.90 (td, J = 12.1, 3.4 Hz, 1 H), 2.69 (s, 3 H), 2.08–2.01 (m, 2 H), 1.95–1.88 (m, 2 H), 1.84–1.78 (m, 1 H), 1.70–1.61 (m, 2 H), 1.53–1.44 (m, 2 H), 1.40–1.33 (m, 1 H). 13C NMR (151 MHz, CDCl3): δ = 166.6, 147.7, 144.4, 129.6, 129.0, 127.1, 125.5, 123.7, 120.4, 47.7, 32.9, 26.7, 26.2, 19.0.
  • 17 2,9-Diisopropyl-4,7-dimethyl-1,10-phenanthroline (20) Light-yellow solid; yield: 39 mg (67%); mp 129.8–130.3 °C. 1H NMR (500 MHz, CDCl3): δ = 7.91 (s, 2 H), 7.37 (s, 2 H), 3.52 (hept, J = 6.9 Hz, 2 H), 2.74 (s, 6 H), 1.47 (d, J = 7.0 Hz, 12 H). 13C NMR (126 MHz, CDCl3): δ = 167.4, 145.4, 144.2, 126.7, 121.1, 121.0, 37.3, 23.0, 19.5.
  • 18 4-Cyclohexyl-2,6-dimethylpyridine (21) Colorless oil; yield: 17 mg (45%); 1H NMR (600 MHz, CDCl3): δ = 6.81 (s, 2 H), 2.51 (s, 6 H), 2.43 (tt, J = 12.0, 4.8 Hz, 1 H), 1.92–1.73 (m, 6 H), 1.48–1.35 (m, 4 H). 13C NMR (151 MHz, CDCl3): δ = 157.6, 157.4, 119.1, 44.0, 33.7, 26.8, 26.2, 24.6.