Synlett 2021; 32(06): 626-630
DOI: 10.1055/a-1327-6388
letter

Synthesis of Spirocyclopropane Oxindoles via Michael-Initiated Cyclopropanation of Pyridinium Salts with 3-Ylidene Oxindoles

Jun-Qi Zhang
a   Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. of China
,
Yujia Gao
b   Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
,
Jinyu Song
a   Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. of China
,
Dandan Hu
a   Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. of China
,
Maozhong Miao
b   Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
,
Hongjun Ren
a   Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. of China
› Author Affiliations
We gratefully acknowledge the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2019R01005) and the launching scientific research funds from Taizhou University.


Abstract

A Michael-initiated ring-closure reaction of pyridinium salts with arylidene oxindoles has been developed. A wide range of aryl-substituted spirocyclopropane oxindoles has been achieved in moderate to good yields (41–99%). This efficient strategy exhibits good functional group compatibility and may serve as an attractive method for the synthesis of diverse cyclopropanes.

Supporting Information



Publication History

Received: 14 October 2020

Accepted after revision: 02 December 2020

Accepted Manuscript online:
02 December 2020

Article published online:
07 January 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zheng GH, Shen JJ, Zhan YC, Yi H, Xue ST, Wang Z, Ji XY, Li ZR. Eur. J. Med. Chem. 2014; 81: 277
    • 1b Bariwal J, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2018; 47: 3831
    • 1c Ye N, Chen H, Wold EA, Shi PY, Zhou J. ACS Infect. Dis. 2016; 2: 382
    • 2a Xiao JA, Cheng XL, Li YC, He YM, Li JL, Liu ZP, Xia PJ, Su W, Yang H. Org. Biomol. Chem. 2018; 17: 103
    • 2b Xu PW, Liu JK, Shen L, Cao ZY, Zhao XL, Yan J, Zhou J. Nat. Commun. 2017; 8: 1619
    • 2c Sampson PB, Liu Y, Patel NK, Feher M, Forrest B, Li SW, Edwards L, Laufer R, Lang Y, Ban F, Awrey DE, Mao G, Plotnikova O, Leung G, Hodgson R, Mason JM, Wei X, Kiarash R, Green E, Qiu W, Chirgadze NY, Mak TW, Pan G, Pauls HW. J. Med. Chem. 2015; 58: 130
    • 2d Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Tuntland T, Zhang K, Karanewsky D, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2109
    • 2e Zaytsev SV, Ivanov KL, Skvortsov DA, Bezzubov SI, Melnikov MY, Budynina EM. J. Org. Chem. 2018; 83: 8695
    • 3a Huang N, Zou L, Peng Y. Org. Lett. 2017; 19: 5806
    • 3b Kapure JS, Reddy CN, Adiyala PR, Nayak R, Nayak VL, Nanubolu JB, Singarapu KK, Maurya RA. RSC Adv. 2014; 4: 38425
    • 3c Cao ZY, Zhou F, Yu YH, Zhou J. Org. Lett. 2013; 15: 42
    • 3d Cao ZY, Wang X, Tan C, Zhao XL, Zhou J, Ding K. J. Am. Chem. Soc. 2013; 135: 8197
    • 3e Chi Y, Qiu L, Xu X. Org. Biomol. Chem. 2016; 14: 10357
    • 3f Awata A, Arai T. Synlett 2013; 24: 29
    • 3g Schwarzer DD, Gritsch PJ, Gaich T. Angew. Chem. Int. Ed. 2012; 51: 11514
    • 4a Ladd CL, Sustac Roman D, Charette AB. Org. Lett. 2013; 15: 1350
    • 4b Tsukano C, Okuno M, Takemoto Y. Chem. Lett. 2013; 42: 753
    • 5a Ivashkin P, Couve-Bonnaire S, Jubault P, Pannecoucke X. Org. Lett. 2012; 14: 2270
    • 5b Ošeka M, Noole A, Žari S, Öeren M, Järving I, Lopp M, Kanger T. Eur. J. Org. Chem. 2014; 3599
    • 6a Zhou R, Yang C, Liu Y, Li R, He Z. J. Org. Chem. 2014; 79: 10709
    • 6b Wilson EE, Rodriguez KX, Ashfeld BL. Tetrahedron 2015; 71: 5765
  • 7 Hajra S, Roy S, Saleh SA. Org. Lett. 2018; 20: 4540
    • 8a Peng C, Zhai J, Xue M, Xu F. Org. Biomol. Chem. 2017; 15: 3968
    • 8b Zhou M, En K, Hu Y, Xu Y, Shen HC, Qian X. RSC Adv. 2017; 7: 3741
    • 8c Qin H, Miao Y, Zhang K, Xu J, Sun H, Liu W, Feng F, Qu W. Tetrahedron 2018; 74: 6809
    • 9a Lu L.-J, Fu Q, Sun J, Yan C.-G. Tetrahedron 2014; 70: 2537
    • 9b Fu Q, Yan C.-G. Tetrahedron 2013; 69: 5841
  • 10 Day J, Uroos M, Castledine RA, Lewis W, McKeever-Abbas B, Dowden J. Org. Biomol. Chem. 2013; 11: 6502
  • 11 Ramu G, Krishna NH, Pawar H, Sastry KN. V, Nanubolu JB, Babu BN. ACS Omega 2018; 3: 12349
  • 12 Ethyl (2S*,3R*)-2′-Oxo-3-[4-(trifluoromethyl)phenyl]spiro [cyclopropane-1,3′-indoline]-2-carboxylate (3c) – Typical Procedure The solution of (E)-3-[4-(trifluoromethyl)benzylidene]indolin-2-one (145 mg, 0.5 mmol), ethoxycarbonylmethylpyridinium bromide (245 mg, 1.0 mmol) in dry DMF (4 mL) in the presence of Cs2CO3 (163 mg, 0.5 mmol) was stirred at 110 °C for 4 h. After completion of the reaction, the mixture was quenched by adding 10 mL of water at room temperature and extracted with EtOAc (3 × 10 mL). The combined organic phase was washed with H2O (3 × 10 mL), dried over anhydrous Na2SO4, concentrated in vacuo, and purified with flash silica gel chromatography using EtOAc/hexane (1:5 to 1:3) to afford 3c (147 mg, 78%) as a white solid; mp 183–184 °C (petroleum ether/EtOAc); Rf = 0.50 (petroleum ether/EtOAc = 3:1). 1H NMR (400 MHz, CDCl3): δ = 8.72–8.54 (m, 1 H), 7.56 (d, J = 8.0 Hz, 2 H), 7.48 (d, J = 8.0 Hz, 1 H), 7.43 (d, J = 8.0 Hz, 2 H), 7.23 (d, J = 8.0 Hz, 1 H), 7.06 (t, J = 8.0 Hz, 1 H), 6.80 (t, J = 8.0 Hz, 1 H), 4.29–4.15 (m, 2 H),3.81 (d, J = 8.0 Hz, 1 H), 3.36 (d, J = 8.0 Hz, 1 H), 1.27 (t, J = 8.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 173.6, 168.0, 141.2, 137.0, 129.6, 127.9, 126.1, 125.02, 124.99 122.8, 122.5 (J C–F = 41 Hz), 122.4, 109.9, 61.8, 39.8, 39.3, 37.1, 14.1. HRMS (ES+–TOF): m/z calcd for C20H17F3NO3 + [M + H]+: 376.1155; found: 376.1166.
  • 13 CCDC 2032994 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.