Synlett 2021; 32(14): 1406-1418
DOI: 10.1055/a-1377-0346
account

Perrhenate Esters as Intermediates in Molecular Complexity-Increasing Reactions

Paul E. Floreancig
The time frame of the work reported in this Account was long, and numerous grants supported the work. We are grateful to the National Institute of General Medical Sciences of the National Institutes of Health (R01-GM62924, P50-GM06082, and R01-GM103886) and the National Science Foundation (CHE-1151979) for generous funding of these projects.


Abstract

Allylic alcohols form perrhenate esters upon reaction with Re2O7 or HOReO3. These species undergo nonstereospecific and nonregiospecific alcohol-transposition reactions through cationic intermediates. Sequencing these nonselective processes with reversible trapping by electrophiles results in cyclization reactions where regio- and stereocontrol are dictated by thermodynamics. The cationic intermediates can also be utilized as electrophiles in intra- or intermolecular dehydrative reactions with nucleophiles. These processes serve as the basis for applications in catalytic syntheses of a wide range of heterocyclic and carbocyclic structures that often show considerable increases in molecular complexity. This Account describes a sequence of events that started from a need to solve a problem for the completion of a natural product synthesis and evolved into a central element in the design of numerous new transformations that proceed under mild conditions from readily accessible substrates.

1 Introduction

2 Exploratory Studies

3 Application to Spiroketal Synthesis

4 Reactions with Epoxides as Trapping Agents

5 Development of Dehydrative Cyclizations

6 Bimolecular Reactions

7 Spirocyclic Ether Formation

8 Conclusions



Publication History

Received: 18 December 2020

Accepted after revision: 28 January 2021

Accepted Manuscript online:
28 January 2021

Article published online:
18 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 D’Ambroasio M, Guerriero A, Peitra F, Debitus C. Helv. Chim. Acta 1996; 79: 51
  • 2 Chatterjee AK, Choi T.-L, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
  • 3 Hong SH, Sanders DP, Lee CW, Grubbs RH. J. Am. Chem. Soc. 2005; 127: 17160
  • 4 Wang Y, Janjic J, Kozmin SA. J. Am. Chem. Soc. 2002; 124: 13670
  • 5 Aubele DL, Wan S, Floreancig PE. Angew. Chem. Int. Ed. 2005; 44: 3485
  • 6 Reich HJ, Yelm KE, Wollowitz S. J. Am. Chem. Soc. 1983; 105: 2503

    • For reviews, see:
    • 7a Volchkov I, Lee D. Chem. Soc. Rev. 2014; 43: 4381
    • 7b Bellemin-Laponnaz S. ChemCatChem 2009; 1: 357
  • 8 Narasaka K, Kusama H, Hiyashi Y. Tetrahedron 1992; 48: 2059
  • 9 Bellemin-Laponnaz S, Gisie H, Le Ny JP, Osborn JA. Angew. Chem. Int. Ed. 1997; 36: 976
  • 10 Morrill C, Grubbs RH. J. Am. Chem. Soc. 2005; 127: 2842
  • 11 Hansen EC, Lee D. J. Am. Chem. Soc. 2006; 128: 8142
  • 12 Jung HH, Seiders JR. II, Floreancig PE. Angew. Chem. Int. Ed. 2007; 46: 8464

    • For other approaches to leucascandrolide A, see:
    • 13a Hornberger KR, Hamblett CL, Leighton JL. J. Am. Chem. Soc. 2000; 122: 12894
    • 13b Kopecky DJ, Rychnovsky SD. J. Am. Chem. Soc. 2001; 123: 8420
    • 13c Wipf P, Reeves JT. Chem. Commun. 2002; 2066
    • 13d Fettes A, Carreira EM. Angew. Chem. Int. Ed. 2002; 41: 4098
    • 13e Paterson I, Tudge M. Angew. Chem. Int. Ed. 2003; 42: 343
    • 13f Williams DR, Plummer SV, Patnaik S. Angew. Chem. Int. Ed. 2003; 42: 3934
    • 13g Crimmins MT, Siliphalvanh P. Org. Lett. 2003; 5: 4641
    • 13h Su Q, Panek JS. Angew. Chem. Int. Ed. 2005; 44: 1223
    • 13i Ferrié L, Reymond S, Capdevielle P, Cossy J. Org. Lett. 2007; 9: 2461
    • 13j Evans PA, Andrews WJ. Angew. Chem. Int. Ed. 2008; 47: 5426
    • 13k Yadav JS, Pattanayak MR, Das PP, Mohapatra DK. Org. Lett. 2011; 13: 1710
    • 13l Lee K, Kim H, Hong J. Org. Lett. 2011; 13: 2722
  • 14 Xie Y, Floreancig PE. Chem. Sci. 2011; 2: 2423
  • 15 Herrmann AT, Saito T, Stivala CE, Tom J, Zakarian A. J. Am. Chem. Soc. 2010; 132: 5962
  • 16 Whitlock HW. J. Org. Chem. 1998; 63: 7982
  • 17 Ellervik U, Magnusson G. J. Am. Chem. Soc. 1994; 116: 2340
    • 18a Sakamoto S, Sakazaki H, Hagiwara K, Kamada K, Ishii K, Noda T, Inoue M, Hirama M. Angew. Chem. Int. Ed. 2004; 43: 6505
    • 18b Lu C.-D, Zakarian A. Org. Lett. 2007; 9: 3161
  • 19 Han X, Floreancig PE. Org. Lett. 2012; 14: 3808
  • 20 Asari AH, Floreancig PE. Angew. Chem. Int. Ed. 2020; 59: 6622
  • 21 Xie Y, Floreancig PE. Angew. Chem. Int. Ed. 2013; 52: 625
  • 22 Scott SL, Basset J.-M. J. Am. Chem. Soc. 1994; 116: 12069
    • 23a Clausen DJ, Wan S, Floreancig PE. Angew. Chem. Int. Ed. 2011; 50: 5178
    • 23b Wan S, Gunaydin H, Houk KN, Floreancig PE. J. Am. Chem. Soc. 2007; 129: 7915
    • 23c Kumar VS, Aubele DL, Floreancig PE. Org. Lett. 2002; 4: 2489 ; corrigendum: Org. Lett. 2003, 5, 2581
  • 24 For a review of asymmetric epoxidations, see: Zhu Y, Wang Q, Cornwall RG, Shi Y. Chem. Rev. 2014; 114: 8199
    • 25a Wang Z.-X, Tu Y, Frohn M, Zhang J.-R, Shi Y. J. Am. Chem. Soc. 1997; 119: 11224
    • 25b Wang B, Wu X.-Y, Wong OA, Nettles B, Zhao M.-X, Chen D, Shi Y. J. Org. Chem. 2009; 74: 3986
  • 26 For an excellent overview, see: Valentine JC, McDonald FE. Synlett 2006; 1816
  • 27 For a recent example of similar reactivity, see: Rodríguez-López J, Brovetto M, Martín VS, Martín T. Angew. Chem. Int. Ed. 2020; 59: 17077
  • 28 Mulholland RL. Jr, Chamberlin AR. J. Org. Chem. 1988; 53: 1082
  • 29 Rychnovsky SD, Dahanukar VH. Tetrahedron Lett. 1996; 37: 339
  • 30 Rohrs TM, Qin Q, Floreancig PE. Angew. Chem. Int. Ed. 2017; 56: 10900

    • For other examples of dehydrative cation formation, see:
    • 31a Wan X, Hu J, Xu D, Shang Y, Zhen Y, Hu C, Xiao F, He Y.-P, Lai Y, Xie W. Tetrahedron Lett. 2017; 58: 1090
    • 31b Hoyisha N, Noda K, Mihara Y, Kawai N, Uenishi J. J. Org. Chem. 2015; 80: 7790
    • 31c Zhang F.-Z, Tian Y, Li G.-X, Qu J. J. Org. Chem. 2015; 80: 1107
    • 31d Zheng H, Ghanbari S, Nakamura S, Hall DG. Angew. Chem. Int. Ed. 2012; 51: 6187
    • 31e Hanessian S, Focken T, Oza R. Tetrahedron 2011; 67: 9870
    • 31f Guérinot A, Serra-Muns A, Gnamm C, Bensoussan C, Reymond S, Cossy J. Org. Lett. 2010; 12: 1808
    • 32a Miller-Wideman M, Makkar N, Tran M, Isaac B, Biest N, Stonard R. J. Antibiot. 1992; 45: 914
    • 32b Isaac BG, Ayer SW, Elliot RC, Stonard RJ. J. Org. Chem. 1992; 57: 7220
  • 33 Hasegawa M, Miura T, Kuzuya K, Inoue A, Ki SW, Horinouchi S, Yoshida T, Kunoh T, Koseki K, Mino K, Sasaki R, Yoshida M, Mizukami T. ACS Chem. Biol. 2011; 6: 229
  • 34 Sakai Y, Yoshida T, Ochiai K, Uosaki Y, Saitoh Y, Tanaka F, Akiyama T, Akinaga S, Mizukami T. J. Antibiot. 2002; 55: 855
    • 35a Meng F, McGrath KP, Hoveyda AH. Nature 2014; 513: 367

    • For other syntheses of herboxidiene, see:
    • 35b Blakemore PR, Kocienski PJ, Morley A, Muir K. J. Chem. Soc., Perkin Trans. 1 1999; 955
    • 35c Banwell M, McLeod M, Premraj R, Simpson G. Pure Appl. Chem. 2000; 72: 1631
    • 35d Zhang Y, Panek JS. Org. Lett. 2007; 9: 3141
    • 35e Murray TJ, Forsyth CJ. Org. Lett. 2008; 10: 3429
    • 35f Ghosh AK, Li J. Org. Lett. 2011; 13: 66
    • 35g Pellicena M, Krämer K, Romea P, Urpí F. Org. Lett. 2011; 13: 5350
    • 35h Lagisetti C, Yermolina MV, Sharma LK, Palacios G, Prigaro BJ, Webb TR. ACS Chem. Biol. 2014; 9: 643
    • 35i Yadav JS, Reddy GM, Anjum SR, Subba Reddy BV. Eur. J. Org. Chem. 2014; 4389
    • 35j Thirupathi B, Mohapatra DK. Org. Biomol. Chem. 2016; 14: 6212

      For other studies of herboxidiene analogues, see:
    • 36a Ghosh AK, Ma N, Effenberger KA, Jurica MS. Org. Lett. 2014; 16: 3154
    • 36b Ghosh AK, Lv K, Ma N, Cárdenas EL, Effenberger KA, Jurica MS. Org. Biomol. Chem. 2016; 14: 5263
    • 36c Imaizumi T, Nakagawa H, Hori R, Watanabe Y, Soga S, Iida K, Onodera H. J. Antibiot. 2017; 70: 675
  • 37 Schönherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
  • 38 For a review on the influence of remote steric interactions on biological activity, see: Larsen EM, Wilson MR, Taylor RE. Nat. Prod. Rep. 2015; 32: 1183
  • 39 Cretu C, Agrawal AA, Cook A, Will CL, Fekkes P, Smith PG, Lührmann R, Larsen N, Buonamici S, Pena V. Mol. Cell 2018; 70: 265
  • 40 Lawrence J.-MI. A, Floreancig PE. Org. Lett. 2020; 22: 9513
  • 41 Hanessian S, Focken T, Oza R, Chen B, Ritson D, Beaudegnies R. J. Org. Chem. 2010; 75: 5601
    • 42a Ishihara K, Furuya Y, Yamamoto H. Angew. Chem. Int. Ed. 2002; 41: 2983
    • 42b Furuya Y, Ishihara K, Yamamoto H. Bull. Chem. Soc. Jpn. 2007; 80: 400
  • 43 Rodriguez del Rey FO, Floreancig PE. Org. Lett. 2021; 23: 150

    • For discussions of the unique properties of HFIP as a solvent, see:
    • 44a Pozhydaiev V, Power M, Gandon V, Moran J, Lebœf D. Chem. Commun. 2020; 56: 11548
    • 44b Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 0088
    • 44c Shuklov IA, Dubrovina NV, Börner A. Synthesis 2007; 2925
    • 45a Mo X, Yakiwchuk J, Dansereau J, McCubbin JA, Hall DG. J. Am. Chem. Soc. 2015; 137: 9694
    • 45b Vukovic VD, Richmond E, Wolf E, Moran J. Angew. Chem. Int. Ed. 2017; 56: 3085
  • 46 Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
  • 47 Bailey N, Carrington A, Lott KA. K, Symons MC. R. J. Chem. Soc. 1960; 290
  • 48 Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
  • 49 Xie Y, Floreancig PE. Angew. Chem. Int. Ed. 2014; 53: 4926
  • 50 For a nontransposing variant of this reaction with BiBr3 as the Lewis acid, see: Evans PA, Cui J, Gharpure SJ, Hinkle RJ. J. Am. Chem. Soc. 2003; 125: 11456
    • 51a Lewis MD, Cha JK, Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
    • 51b Larsen CH, Ridgway BH, Shaw JT, Woerpel KA. J. Am. Chem. Soc. 1999; 121: 12208
    • 51c Larsen CH, Ridgway BH, Shaw JT, Smith DM, Woerpel KA. J. Am. Chem. Soc. 2005; 127: 10879
  • 52 Mayr H, Basso N, Hagen G. J. Am. Chem. Soc. 1992; 114: 3060
  • 53 Smith DM, Tran MB, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 14149
    • 54a Kruse CG, Poels EK, Jonkers FL, Van der Gen A. J. Org. Chem. 1978; 43: 3548
    • 54b Green ME, Rech JC, Floreancig PE. Angew. Chem., Int. Ed. 2008; 47: 7317
  • 55 Xu H, Zuend J, Wall MG, Tao Y, Jacobsen EN. Science 2010; 327: 986
  • 56 Borovika A, Tang PI, Klapman S, Nagorny P. Angew. Chem. Int. Ed. 2013; 52: 13424
  • 57 Tadpetch K, Rychnovsky SD. Org. Lett. 2008; 10: 4839

    • For reviews of Prins-type cyclization reactions, see:
    • 58a Han X, Peh GR, Floreancig PE. Eur. J. Org. Chem. 2013; 1193
    • 58b Crane EA, Scheidt KA. Angew. Chem. Int. Ed. 2010; 49: 8316
    • 58c Olier C, Kaafrani M, Gastaldi S, Bertrand MP. Tetrahedron 2010; 66: 413
  • 59 Jasti R, Rychnovsky SD. Org. Lett. 2006; 8: 2175
    • 60a Rosenberg S, Leino R. Synthesis 2009; 2651
    • 60b Rios R. Chem. Soc. Rev. 2012; 41: 1060
  • 61 Afeke C, Xie Y, Floreancig PE. Org. Lett. 2019; 21: 5064
  • 62 Seeman JI. Chem. Rev. 1983; 83: 83