Synlett 2021; 32(08): 785-789
DOI: 10.1055/a-1387-8862
letter

Base-Catalyzed Intramolecular Defluorination/O-Arylation Reaction for the Synthesis of 3-Fluoro-1,4-oxathiine 4,4-Dioxide

Lei Kang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Jinlong Zhang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Huameng Yang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Jinlong Qian
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Gaoxi Jiang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
› Author Affiliations
Financial support from the National Natural Science Foundation of China (21602231), the Natural Science Foundation of Jiangsu Province (BK20160396 and BK20191197), and the Chinese Academy of Sciences (‘Light of West China’ Program) is gratefully acknowledged.


Abstract

A novel process involving base-catalyzed intramolecular defluorination/O-arylation of readily available α-fluoro-β-one-sulfones was realized and provided a series of 3-fluoro-1,4-oxathiine 4,4-dioxide derivatives in good to excellent yields. Unlike traditional defluorination reactions with stoichiometric base as the deacid reagent, this process is triggered by a catalytic amount of base (TMG: tetramethylguanidine) and molecular sieves serve as both an adsorbent to remove HF acid and an activator to assist C–F bond cleavage.

Supporting Information



Publication History

Received: 27 January 2021

Accepted after revision: 10 February 2021

Accepted Manuscript online:
10 February 2021

Article published online:
30 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 2a Li P, Oyang X, Xie X, Guo Y, Li Z, Xi J, Zhu D, Ma X, Liu B, Li J, Xiao Z. Environ. Pollut. 2020; 256: 113512
    • 2b Chen H, Reinhard M, Yin T, Nguyen TV, Tran NH, Yew-Hoong Gin K. Water Res. 2019; 154: 227
    • 2c Cao X, Wang C, Lu Y, Zhang M, Khan K, Song S, Wang P, Wang C. Ecotoxicol. Environ. Saf. 2019; 174: 208
    • 2d Stanifer JW, Stapleton HM, Souma T, Wittmer A, Zhao X, Boulware LE. J. Am. Soc. Nephrol. 2018; 13: 1479
    • 3a Kiplinger JL, Richmond TG, Osterberg CE. Chem. Rev. 1994; 94: 373
    • 3b Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
    • 3c Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007
    • 3d Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
    • 3e Clot E, Eisenstein O, Jasim N, Macgregor SA, McGrady JE, Perutz RN. Acc. Chem. Res. 2011; 44: 333
    • 3f Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem. Rev. 2015; 115: 931
    • 3g Eisenstein O, Milani J, Perutz RN. Chem. Rev. 2017; 117: 8710
    • 3h Simpkins NS. Sulphones in Organic Synthesis . Pergamon Press; Oxford: 1993
    • 4a Kiso Y, Tamao K, Kumada M. J. Organomet. Chem. 1973; 50: 12
    • 4b Böhm VP. W, Gstöttmayr CW. K, Weskamp T, Herrmann WA. Angew. Chem. Int. Ed. 2001; 40: 3387
    • 4c Ackermann L, Born R, Spatz JH, Meyer D. Angew. Chem. Int. Ed. 2005; 44: 7216
    • 4d Tobisu M, Xu T, Shimasaki T, Chatani N. J. Am. Chem. Soc. 2011; 133: 19505
    • 4e Liu X.-W, Echavarren J, Zarate C, Martin R. J. Am. Chem. Soc. 2015; 137: 12470
    • 4f Niwa T, Ochiai H, Watanabe Y, Hosoya T. J. Am. Chem. Soc. 2015; 137: 14313
    • 4g Cui B, Jia S, Tokunaga E, Shibata N. Nat. Commun. 2018; 9: 3055
    • 4h Harada T, Ueda Y, Iwai T, Sawamura M. Chem. Commun. 2018; 54: 1718
    • 5a Dugan TR, Sun X, Rybak-Akimova EV, Olatunji-Ojo O, Cundari TR, Holland PL. J. Am. Chem. Soc. 2011; 133: 12418
    • 5b Dugan TR, Goldberg JM, Brennessel WW, Holland PL. Organometallics 2012; 31: 1349
    • 5c Lim S, Song D, Jeon S, Kim Y, Kim H, Lee S, Cho H, Lee BC, Kim SE, Kim K, Lee E. Org. Lett. 2018; 20: 7249
    • 5d Lim S, Cho H, Jeong J, Jang M, Kim H, Cho SH, Lee E. Org. Lett. 2020; 22: 7387
  • 6 Pan C, Wang L, Han J. Org. Lett. 2020; 22: 4776
    • 7a Fujii I, Semba K, Li QZ, Sakaki S, Nakao Y. J. Am. Chem. Soc. 2020; 142: 11647
    • 7b Moore JT, Lu CC. J. Am. Chem. Soc. 2020; 142: 11641
  • 8 Pistritto VA, Schutzbach-Horton ME, Nicewicz DA. J. Am. Chem. Soc. 2020; 142: 17187
  • 10 Grevtsov OY, Zaremba OV, Bondarenko AB, Drushlyak OG, Kovalenko SM, Chernykh VP. Int. J. Org. Chem. 2013; 3: 125
    • 11a Posner GH, Wang Q, Han G, Lee JK, Crawford K, Zand S, Brem H, Peleg S, Dolan P, Kensler TW. J. Med. Chem. 1999; 42: 3425
    • 11b Dunny E, Doherty W, Evans P, Malthouse JP. G, Nolan D, Knox AJ. S. J. Med. Chem. 2013; 56: 6638
    • 11c Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 11d Hamamoto I, Aoyama H, Sakamshi K, Iwasa T, Kobayashi T. Patent WO 2017/104741 Al, 2017
    • 11e McCune CD, Beio ML, Sturdivant JM, de la Salud-Bea R, Darnell BM, Berkowitz DB. J. Am. Chem. Soc. 2017; 139: 14077
    • 11f Li W, Sun H, Xu F, Shuai W, Liu J, Xu S, Yao H, Ma C, Zhu Z, Xu J. Bioorg. Chem. 2019; 85: 49
    • 11g Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
    • 11h Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
    • 11i Aziz J, Hamze A. Org. Biomol. Chem. 2020; 18: 9136
    • 12a Jaramillo E, Chandross M. J Phys. Chem. B, 2004; 108: 20155
    • 12b Huang Q, Wang Y, Liu J, Zhang Y, Zeng L. Processes, 2019; 7: 698
    • 12c Hong A, Mariwala RK, Kane MS, Foley HC. Ind. Eng. Chem. Res. 1995; 34: 992
    • 12d Faux DA, Smith W, Forester TR. J Phys. Chem. B, 1997; 101: 1762
  • 13 3-Fluoro-2-phenylbenzo[b][1,4]oxathiine 4,4-dioxide (2a); Typical Procedure Substrate 1a (0.2 mmol, 1.0 equiv), tetramethylguanidine (TMG, 0.01 mmol, 100 μL of 0.1 M TMG in DMF), and 3 Å molecular sieves (100 mg, 3 Å molecular sieves were activated at 180 °C for 5 h) were mixed in anhydrous DMF (1.0 mL) at 80 °C for 10 h. After the reaction was complete, the solvent was evaporated and the crude mixture was purified by flash chromatography on silica gel (PE/EtOAc/DCM = 12:1:1) to afford the desired compound 2a in 90% yield; white solid; mp 131–133 °C. 1H NMR (400 MHz, chloroform-d): δ = 8.04–7.97 (m, 1 H), 7.80 (dd, J = 6.7, 2.9 Hz, 2 H), 7.72–7.64 (m, 1 H), 7.53 (dd, J = 5.0, 1.9 Hz, 3 H), 7.48–7.38 (m, 2 H). 13C NMR (100 MHz, chloroform-d): δ = 150.0, 144.4 (d, J = 21.1 Hz), 141.6 (d, J = 276.7 Hz), 134.2, 131.6, 128.9, 128.0, 127.9, 126.2 (d, J = 6.2 Hz), 125.6, 123.2 (d, J = 2.6 Hz), 119.2. 19F NMR (376 MHz, chloroform-d): δ = –175.89. HRMS (ESI): m/z calcd for C14H9FNaO3S [M + Na]+: 299.0149; found: 299.0145.