Synthesis 2021; 53(18): 3193-3210
DOI: 10.1055/a-1405-5761
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Recent Advances on Benzofuranones: Synthesis and Transformation via C–H Functionalization

Zhi Tang
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. of China
b   Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources Hainan Provincial Key Lab of Fine Chem, Hainan University, Haikou, 570228, P. R. of China
,
Zhou Tong
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. of China
,
Renhua Qiu
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. of China
,
Shuang-Feng Yin
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. of China
,
Nobuaki Kambe
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. of China
c   The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
› Author Affiliations
The authors thank the Natural Science Foundation of China (21676076, 21878071, and 21971060), Hu-Xiang High Talent in Hunan Province (2018RS3042), Recruitment Program of China (WQ20164300353), and the Natural Science Foundation of Changsha (kq2004008) for financial support.


Dedicated to Prof. Shinji Murai on the occasion of his 80th birthday.

Abstract

The benzofuranone structure is important in many fields, such as natural products, pharmaceuticals, building blocks, antioxidants, and dyes. The efficient synthesis and transformation of benzofuranones have attracted great attention in organic synthesis. They can be synthesized by the Friedel–Crafts reaction and intramolecular dehydration ring-closing and transition-metal-catalyzed reactions, among others. Their direct utilization in the preparation of other functional molecules further enhance their application. Due to their low pK a value and easy enolization, the transformation of benzofuranones via C(3)–H bond functionalization has been a hot issue since 2010. Herein, we highlight advances in the synthesis of benzofuranones and their transformation via C–H functionalization. Other transformations related to benzofuranones are also discussed.

1 Introduction

2 Synthesis of Benzofuranones

3 C–H Functionalization of Benzofuranones

4 Other Types of Reactions of Benzofuranones

5 Conclusion and Outlook



Publication History

Received: 07 February 2021

Accepted after revision: 03 March 2021

Accepted Manuscript online:
04 March 2021

Article published online:
31 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nicolaou KC, Kang Q, Wu TR, Lim CS, Chen DY.-K. J. Am. Chem. Soc. 2010; 132: 7540
  • 2 Nicolaou KC, Kang Q, Wu TR, Chen DY.-K. Angew. Chem. Int. Ed. 2009; 48: 3440
  • 3 Snyder SA, Thomas SB, Mayer AC, Breazzano SP. Angew. Chem. Int. Ed. 2012; 51: 4080
  • 4 Zhu X, Ye L, Ge H, Chen L, Jiang N, Qian L, Li L, Liu R, Ji S, Zhang S, Jin J, Guan D, Fang W, Tan R, Xu Y. Aging Cell 2013; 12: 85
  • 5 Wu B, He S, Wu X.-D, Wu D.-K, Pan Y.-J. Helv. Chim. Acta 2007; 90: 1586
  • 6 Chang CW, Chein RJ. J. Org. Chem. 2011; 76: 4154
  • 7 Fang L, Lyu Q, Lu C, Li H, Liu S, Han L. Adv. Synth. Catal. 2016; 358: 3196
  • 8 Liu X, Hu L, Jiang L, Jia J, Zhang D, Chen X. Eur. J. Org. Chem. 2015; 2015: 2291
  • 9 Gentles JC. Nature 1958; 182: 476
  • 10 Ho YS, Duh JS, Jeng JH, Wang YJ, Liang YC, Lin CH, Tseng CJ, Yu CF, Chen RJ, Lin JK. Int. J. Cancer 2001; 91: 393
  • 11 Rebacz B, Larsen TO, Clausen MH, Rønnest MH, Löffler H, Ho AD, Krämer A. Cancer Res. 2007; 67: 6342
  • 12 Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ. Nature 1994; 367: 630
  • 13 Kido F, Noda Y, Yoshikoshi A. J. Chem. Soc., Chem. Commun. 1982; 1209
  • 14 Meng X, Xin Z, Wang XF. Polym. Degrad. Stab. 2010; 95: 2076
  • 15 Rex I, Graham BA, Thompson MR. Polym. Degrad. Stab. 2010; 90: 136
  • 16 Cerón-Carrasco JP, Ripoche A, Odobel F. Dyes Pigm. 2012; 92: 1144
  • 17 Sokolov AI, Baranov MS. Chem. Heterocycl Compd. 2020; 56: 1274
    • 18a Venkateswarlu S, Panchagnula GK, Guraiah MB, Subbaraju GV. Tetrahedron 2005; 61: 3013
    • 18b Suzuki K, Yahara S, Maehata K, Uyeda M. J. Nat. Prod. 2001; 64: 204
  • 19 Kalinin AV, Miah MA. J, Chattopadhyay S, Tsukazaki M, Wicki M, Nguen T, Ceolho AL, Kerr M, Snieckus V. Synlett 1997; 839
  • 20 Miah MA. J, Sibi MP, Chattopadhyay S, Familoni OB, Snieckus V. Eur. J. Org. Chem. 2018; 2018: 440
  • 21 Rit RK, Yadav MR, Sahoo AK. Org. Lett. 2014; 16: 968
  • 22 Chen L, Zhou F, Shi DT, Zhou J. J. Org. Chem. 2012; 77: 4354
    • 23a Dhotare BB, Choudhary MK, Nayak SK. Synth. Commun. 2016; 46: 1772
    • 23b Tang Z, Tong Z, Xu Z, Au C.-T, Qiu R, Yin S.-F. Green Chem. 2019; 21: 2015
    • 23c Hu S, Lu Z, Liu M, Xu H, Wu J, Chen F. J. Org. Chem. 2020; 85: 14916
    • 23d Xu K, Chen W, Chen X, Wang B, Huang J, Tian X. Org. Chem. Front. 2020; 7: 1679
  • 24 D’Souza DM, Rominger F, Müller TJ. J. Angew. Chem. Int. Ed. 2005; 44: 153
  • 25 D’Souza DM, Kiel A, Herten D.-P, Rominger F, Müller TJ. J. Chem. Eur. J. 2008; 14: 529
  • 26 Matsuda T, Shigeno M, Murakami M. Org. Lett. 2008; 10: 5219
  • 27 Sue D, Kawabata T, Sasamori T, Tokitoh N, Tsubaki K. Org. Lett. 2010; 12: 256
  • 28 Satoh T, Tsuda T, Kushino Y, Miura M, Nomura M. J. Org. Chem. 1996; 61: 6476
  • 29 Satoh T, Tsuda T, Terao Y, Miura M, Nomura M. J. Mol. Catal. A: Chem. 1999; 143: 203
  • 30 Qi X, Li HP, Wu XF. Chem. Asian J. 2016; 11: 2453
  • 31 Li HP, Ai HJ, Qi X, Peng JB, Wu XF. Org. Biomol. Chem. 2017; 15: 1343
    • 33a Yang M, Jiang X, Shi WJ, Zhu QL, Shi ZJ. Org. Lett. 2013; 15: 690
    • 33b Cheng XF, Li Y, Su YM, Yin F, Wang JY, Sheng J, Vora HU, Wang XS, Yu JQ. J. Am. Chem. Soc. 2013; 135: 1236
    • 33c Hajipour AR, Khorsandi Z. Tetrahedron Lett. 2020; 61: 151396
  • 34 Cassani C, Tian X, Escudero-Adan EC, Melchiorre P. Chem. Commun. 2011; 47: 233
  • 35 Li X, Lin M.-H, Han Y, Wang F, Cheng J.-P. Org. Lett. 2014; 16-114: 3847 ; corrigendum: Org. Lett. 2014, 16, 3847
  • 36 Companyó X, Zea A, Alba A.-NR, Mazzanti A, Moyano A, Rios R. Chem. Commun. 2010; 46: 6953
  • 37 Liu C, Tan BX, Jin J.-L, Zhang Y.-Y, Dong N, Li X, Cheng J.-P. J. Org. Chem. 2011; 76: 5838
  • 38 Wang D, Yang Y.-L, Jiang J.-J, Shi M. Org. Biomol. Chem. 2012; 10: 7158
  • 39 Li X, Xi Z, Luo S, Cheng J.-P. Adv. Synth. Catal. 2010; 352: 1097
  • 40 Li X, Hu S, Xi Z, Zhang L, Luo S, Cheng J.-P. J. Org. Chem. 2010; 75: 8697
  • 41 Yang C, Zhang EG, Li X, Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 6506
  • 42 Li X, Zhang YY, Xue XS, Jin J.-L, Tan BX, Liu C, Dong N, Cheng J.-P. Eur. J. Org. Chem. 2012; 2012: 1774
  • 43 Li X, Xue X.-S, Liu C, Wang B, Tan B.-X, Jin J.-L, Zhang Y.-Y, Dong N, Cheng J.-P. Org. Biomol. Chem. 2012; 10: 413
  • 44 Wang Z, Yao Q, Kang T, Feng J, Liu X, Lin L, Feng X. Chem. Commun. 2014; 50: 4918
  • 45 Ohmatsu K, Ito M, Kunieda T, Ooi T. J. Am. Chem. Soc. 2013; 135: 590
  • 46 Hong G, Nahide PD, Neelam UK, Amadeo P, Vijeta A, Curto JM, Hendrick CE, VanGelder KF, Kozlowski MC. ACS Catal. 2019; 9: 3716
  • 47 Wei QD, Yao YM, Chang S.-Q, Yang W.-D, Tian M.-Y, Liu X.-L, Zhou Y. Synthesis 2020; 52: 85
    • 48a Liu Y, Li J, Ye X, Zhao X, Jiang Z. Chem. Commun. 2016; 52: 13955
    • 48b Tang Z, Liu Z, Tong Z, Xu Z, Au C.-T, Qiu R, Kambe N. Org. Lett. 2019; 21: 5152
    • 49a Zhu C.-L, Zhang F.-G, Meng W, Nie J, Cahard D, Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 5869
    • 49b Liu R, Krishnamurthy S, Wu Z, Tummalapalli KS. S, Antilla JC. Org. Lett. 2020; 22: 8101
  • 50 Yang C, Liu Y, Yang JD, Li YH, Li X, Cheng JP. Org. Lett. 2016; 18: 1036
  • 51 Zhu C.-L, Fu X.-Y, Wei A.-J, Cahard D, Ma J.-A. J. Fluorine Chem. 2013; 150: 60
  • 52 Huang L, Li J, Zhao Y, Ye X, Liu Y, Yan L, Tan CH, Liu H, Jiang Z. J. Org. Chem. 2015; 80: 8933
    • 53a Tang Z, Peng L, Yuan Y, Li T, Qiu R, Kambe N. J. Org. Chem. 2020; 85: 5300
    • 53b Tong Z, Tang Z, Au CT, Qiu R. J. Org. Chem. 2020; 85: 8533
  • 54 Tang Z, Wang Z, Peng Z, Yang Q, Yin S.-F, Qiu R. J. Org. Chem. 2021; 86: 2965