Synthesis 2021; 53(14): 2367-2380
DOI: 10.1055/a-1426-4451
short review

Enzymatic Synthesis of Glycosphingolipids: A Review

Qingjiang Li
,
Zhongwu Guo
The authors thank the National Science Foundation (NSF) (CHE-1800279) for the financial support of our research. Z.G. thanks Steven Scott and Rebecca Scott for their generous endowment.


Abstract

Glycosphingolipids (GSLs) are the major vertebrate glycolipids, which contain two distinctive moieties, a glycan and a ceramide, stitched together by a β-glycosidic linkage. The hydrophobic lipid chains of ceramide can insert into the cell membrane to form ‘lipid rafts’ and anchor the hydrophilic glycan onto the cell surface to generate microdomains and function as signaling molecules. GSLs mediate signal transduction, cell interactions, and many other biological activities, and are also related to many diseases. To meet the need of biological studies, chemists have developed various synthetic methodologies to access GSLs. Among them, the application of enzymes to GSL synthesis has witnessed significant advancements in the past decades. This short review briefly summarizes the history and progress of enzymatic GSL synthesis.

1 Introduction

1.1 The Glycosphingolipid Structure

1.2 GSL Biosynthesis

1.3 Functions and Biological Significance

1.4 Overview of GSL Synthesis

1.5 Scope of the Review

2 Glycotransferases for GSL Synthesis

3 Glycosynthases for GSL Synthesis

4 Enzymatic Synthesis of Ceramide

5 Conclusion



Publication History

Received: 07 January 2021

Accepted after revision: 11 March 2021

Accepted Manuscript online:
11 March 2021

Article published online:
01 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sandhoff K, Kolter T. Philos. Trans. R. Soc. London, Ser. B 2003; 358: 847
    • 1b Schnaar RL, Suzuki A, Stanley P. In Essentials of Glycobiology, 2nd ed. Varli A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 2009: 129-141
    • 2a Hakomori S. Glycolipid-Dependent Adhesion Processes . In Encyclopedia of Biological Chemistry, Vol. 2. Lennarz WJ, Daniel Lane M. Elsevier; Amsterdam: 2004: 261-265
    • 2b Lingwood CA. Cold Spring Harbor Perspect. Biol. 2011; 3: a004788
    • 3a Alonso A, Goni FM. Annu. Rev. Biophys. 2018; 47: 633
    • 3b Goni FM, Alonso A. Biochim. Biophys. Acta, Biomembr. 2009; 1788: 169
  • 4 Schnaar RL. Glycobiology 1991; 1: 477
  • 5 Merrill AH. Jr. Chem. Rev. 2011; 111: 6387
  • 6 Wennekes T, van den Berg RJ. B. H. N, Boot RG, van der Marel GA, Overkleeft HS, Aerts JM. F. G. Angew. Chem. Int. Ed. 2009; 48: 8848
    • 7a Magnusson G. Adv. Drug Delivery Rev. 1994; 13: 267
    • 7b Kulkarni SS. Synthesis of Glycosphingolipids . In Glycochemical Synthesis: Strategies and Applications . Hung S.-C, Zulueta MM. L. John Wiley & Sons; Hoboken: 2016: 293-326
    • 7c Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Chem. Rev. 2018; 118: 8188
    • 7d Imamura A, Kiso M. Methods Mol. Biol. 2018; 1804: 293
  • 8 Zimmermann P, Bommer R, Bare T, Schmidt RR. J. Carbohydr. Chem. 1988; 7: 435
    • 9a Koike K, Sugimoto M, Sato S, Ito Y, Nakahara Y, Ogawa T. Carbohydr. Res. 1987; 163: 189
    • 9b Koike K, Sugimoto M, Nakahara Y, Ogawa T. Carbohydr. Res. 1987; 162: 237
    • 10a Nicolaou KC, Caulfield TJ, Kataoka H, Stylianides NA. J. Am. Chem. Soc. 1990; 112: 3693
    • 10b Nicolaou KC, Caulfield TJ, Katoaka H. Carbohydr. Res. 1990; 202: 177
    • 11a Murase T, Ishida H, Kiso M, Hasegawa A. Carbohydr. Res. 1989; 188: 71
    • 11b Hasegawa A, Ando T, Kameyama A, Kiso M. J. Carbohydr. Chem. 1992; 11: 645
    • 13a Wong CH, Haynie SL, Whitesides GM. J. Org. Chem. 1982; 47: 5416
    • 13b Koeller KM, Wong C.-H. Chem. Rev. 2000; 100: 4465
    • 13c Yu H, Chen X. Org. Biomol. Chem. 2016; 14: 2809
    • 13d Ichikawa Y, Liu JL. C, Shen GJ, Wong CH. J. Am. Chem. Soc. 1991; 113: 6300
  • 14 Hancock SM, Vaughan MD, Withers SG. Curr. Opin. Chem. Biol. 2006; 10: 509
    • 15a Wang L.-X, Huang W. Curr. Opin. Chem. Biol. 2009; 13: 592
    • 15b Danby PM, Withers SG. ACS Chem. Biol. 2016; 11: 1784
    • 15c Cobucci-Ponzano B, Strazzulli A, Rossi M, Moracci M. Adv. Synth. Catal. 2011; 353: 2284
    • 15d Li C, Wang L.-X. Chem. Rev. 2018; 118: 8359
    • 15e Fairbanks AJ. Chem. Soc. Rev. 2017; 46: 5128
    • 15f Filice M, Marciello M. Curr. Org. Chem. 2013; 17: 701
    • 15g Cobucci-Ponzano B, Moracci M. Nat. Prod. Rep. 2012; 29: 697
    • 15h Yu B, Wang L.-X, Danishefsky S, Crich D. Carbohydrate Synthesis towards Glycobiology . In Organic Chemistry – Breakthroughs and Perspectives . Ding K, Dai L.-X. Wiley-VCH; Weinheim: 2012: 181-219
    • 15i Cobucci-Ponzano B, Moracci M. Biocatalysis in Organic Synthesis 1, Science of Synthesis . Georg Thieme Verlag; Stuttgart: 2015: 483-506
    • 16a Schmaltz RM, Hanson SR, Wong C.-H. Chem. Rev. 2011; 111: 4259
    • 16b Zhang J, Shao J, Kowal P, Wang PG. Enzymatic Synthesis of Oligosaccharides . In Carbohydrate-Based Drug Discovery . Wong C.-H. Wiley-VCH; Weinheim: 2003: 137-167
    • 16c Benkoulouche M, Faure R, Remaud-Simeon M, Moulis C, Andre I. Interface Focus 2019; 9: 20180069
    • 16d Chen R. Appl. Microbiol. Biotechnol. 2018; 102: 3017
    • 16e Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Chem. Rev. 2018; 118: 8151
    • 16f Armstrong Z, Withers SG. Biopolymers 2013; 99: 666
    • 16g Flitsch SL. Enzymatic Carbohydrate Synthesis . In Comprehensive Chirality, Vol. 7. Turner NJ. Elsevier; Amsterdam: 2012: 454-464
    • 16h Buchholz K, Seibel J. In Encyclopedia of Industrial Biotechnology, Vol. 3 . Enzymatic Oligosaccharide Synthesis . Flickinger MC. Wiley-VCH; Weinheim: 2010: 2049-2054
    • 17a Samuelsson BE. FEBS Lett. 1984; 167: 47
    • 17b Basu S, Basu M, Chien JL. J. Biol. Chem. 1975; 250: 2956
    • 17c Zielenski J, Koscielak J. Eur. J. Biochem. 1982; 125: 323
    • 17d Basu M, Basu S. J. Biol. Chem. 1972; 247: 1489
    • 17e Pacuszka T, Koscielak J. Arch. Immunol. Ther. Exp. 1978; 26: 121
    • 17f Prohaska R, Schenkel-Brunner H, Tuppy H. Eur. J. Biochem. 1978; 84: 161
    • 17g Samuelsson BE. FEBS Lett. 1983; 152: 305
    • 18a Pohlentz G, Klein D, Schwarzmann G, Schmitz D, Sandhoff K. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 7044
    • 18b Nagata Y, Yamashiro S, Yodoi J, Lloyd KO, Shiku H, Furukawa K. J. Biol. Chem. 1992; 267: 12082
    • 18c Hashimoto Y, Sekine M, Iwasaki K, Suzuki A. J. Biol. Chem. 1993; 268: 25857
    • 18d Lutz MS, Jaskiewicz E, Darling DS, Furukawa K, Young WW. Jr. J. Biol. Chem. 1994; 269: 29227
    • 18e Steigerwald JC, Basu S, Kaufman B, Roseman S. J. Biol. Chem. 1975; 250: 6727
    • 18f Jorasch P, Warnecke DC, Lindner B, Zahringer U, Heinz E. Eur. J. Biochem. 2000; 267: 3770
  • 19 Sarver SA, Keithley RB, Essaka DC, Tanaka H, Yoshimura Y, Palcic MM, Hindsgaul O, Dovichi NJ. J. Chromatogr. A 2012; 1229: 268
  • 20 Zehavi U, Herchman M, Schmidt RR, Baer T. Glycoconjugate J. 1990; 7: 229
    • 21a Tuchinsky A, Zehavi U. Chem. Phys. Lipids 1998; 92: 91
    • 21b Zehavi U, Tuchinsky A. Glycoconjugate J. 1998; 15: 657
    • 21c Zehavi U. React. Funct. Polym. 1999; 41: 59
  • 22 Komura N, Kato K, Udagawa T, Asano S, Tanaka H.-N, Imamura A, Ishida H, Kiso M, Ando H. Science 2019; 364: 677
    • 23a Guilbert B, Khan TH, Flitsch SL. J. Chem. Soc., Chem. Commun. 1992; 1526
    • 23b Guilbert B, Flitsch SL. J. Chem. Soc., Perkin Trans. 1 1994; 1181
  • 24 Izumi M, Shen G.-J, Wacowich-Sgarbi S, Nakatani T, Plettenburg O, Wong C.-H. J. Am. Chem. Soc. 2001; 123: 10909
  • 25 Adlercreutz D, Weadge JT, Petersen BO, Duus JO, Dovichi NJ, Palcic MM. Carbohydr. Res. 2010; 345: 1384
  • 26 Liu KK. C, Danishefsky SJ. Chem. Eur. J. 1996; 2: 1359
  • 27 Blixt O, Vasiliu D, Allin K, Jacobsen N, Warnock D, Razi N, Paulson JC, Bernatchez S, Gilbert M, Wakarchuk W. Carbohydr. Res. 2005; 340: 1963
  • 28 Tsai T.-I, Lee H.-Y, Chang S.-H, Wang C.-H, Tu Y.-C, Lin Y.-C, Hwang D.-R, Wu C.-Y, Wong C.-H. J. Am. Chem. Soc. 2013; 135: 14831
  • 29 Li T, Liu L, Wei N, Yang J.-Y, Chapla DG, Moremen KW, Boons G.-J. Nat. Chem. 2019; 11: 229
  • 30 Antoine T, Heyraud A, Bosso C, Samain E. Angew. Chem. Int. Ed. 2005; 44: 1350
  • 31 Yu H, Li Y, Zeng J, Thon V, Nguyen DM, Ly T, Kuang HY, Ngo A, Chen X. J. Org. Chem. 2016; 81: 10809
  • 32 Wang PG, Liu Y, Wen L, Li L, Gadi MR, Guan W, Huang K, Xiao Z, Wei M, Ma C, Zhang Q, Yu H, Chen X, Fang J. Eur. J. Org. Chem. 2016; 4315
  • 33 Santra A, Li Y, Yu H, Slack TJ, Wang PG, Chen X. Chem. Commun. 2017; 53: 8280
  • 34 Li Y, Yu H, Chen Y, Lau K, Cai L, Cao H, Tiwari VK, Qu J, Thon V, Wang PG, Chen X. Molecules 2011; 16: 6396
  • 35 Chen Y, Thon V, Li Y, Yu H, Ding L, Lau K, Qu J, Hie L, Chen X. Chem. Commun. 2011; 47: 10815
  • 36 Lau K, Thon V, Yu H, Ding L, Chen Y, Muthana MM, Wong D, Huang R, Chen X. Chem. Commun. 2010; 46: 6066
  • 37 Li Y, Xue M, Sheng X, Yu H, Zeng J, Thon V, Chen Y, Muthana MM, Wang PG, Chen X. Bioorg. Med. Chem. 2016; 24: 1696
  • 38 Chen M, Chen L.-L, Zou Y, Xue M.-Y, Liang M, Jin L, Guan W.-Y, Shen J, Wang W.-J, Wang L, Liu J, Wang PG. Carbohydr. Res. 2011; 346: 2421
  • 39 Chen X, Fang J, Zhang J, Liu Z, Shao J, Kowal P, Andreana P, Wang PG. J. Am. Chem. Soc. 2001; 123: 2081
  • 40 Fang J, Li J, Chen X, Zhang Y, Wang J, Guo Z, Zhang W, Yu L, Brew K, Wang PG. J. Am. Chem. Soc. 1998; 120: 6635
  • 41 Yu H, Santra A, Li Y, McArthur JB, Ghosh T, Yang X, Wang PG, Chen X. Org. Biomol. Chem. 2018; 16: 4076
  • 42 Yu H, Yu H, Karpel R, Chen X. Bioorg. Med. Chem. 2004; 12: 6427
  • 43 Thon V, Li Y, Yu H, Lau K, Chen X. Appl. Microbiol. Biotechnol. 2012; 94: 977
  • 44 Gilbert M, Brisson JR, Karwaski MF, Michniewicz J, Cunningham AM, Wu Y, Young NM, Wakarchuk WW. J. Biol. Chem. 2000; 275: 3896
  • 45 Malekan H, Fung G, Thon V, Khedri Z, Yu H, Qu J, Li Y, Ding L, Lam KS, Chen X. Bioorg. Med. Chem. 2013; 21: 4778
  • 46 Engels L, Elling L. Glycobiology 2014; 24: 170
  • 47 Li Q, Jaiswal M, Rohokale RS, Guo Z. Org. Lett. 2020; 22: 8245
  • 48 Tomasek J, Schatz J. Green Chem. 2013; 15: 2317
  • 49 Ichikawa S, Sakiyama H, Suzuki G, Hidari KI. P, Hirabayashi Y. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 4638
    • 50a Yuan J, Martinez-Bilbao M, Huber RE. Biochem. J. 1994; 299: 527
    • 50b Wakarchuk WW, Campbell RL, Sung WL, Davoodi J, Yaguchi M. Protein Sci. 1994; 3: 467
    • 51a Wang Q, Graham RW, Trimbur D, Warren RA. J, Withers SG. J. Am. Chem. Soc. 1994; 116: 11594
    • 51b Mackenzie LF, Wang Q, Warren RA. J, Withers SG. J. Am. Chem. Soc. 1998; 120: 5583
  • 52 Ito M, Yamagata T. J. Biol. Chem. 1986; 261: 14278
    • 53a Nishimura S.-I, Yamada K. J. Am. Chem. Soc. 1997; 119: 10555
    • 53b Yamada K, Fujita E, Nishimura S. Carbohydr. Res. 1997; 305: 443
  • 54 Li YT, Carter BZ, Rao BN. N, Schweingruber H, Li SC. J. Biol. Chem. 1991; 266: 10723
  • 55 Yamada K, Matsumoto S, Nishimura S.-I. Chem. Commun. 1999; 507
  • 56 Horibata Y, Higashi H, Ito M. J. Biochem. 2001; 130: 263
  • 57 Ishibashi Y, Kiyohara M, Okino N, Ito M. J. Biochem. 2007; 142: 239
  • 58 Wang Q, Tull D, Meinke A, Gilkes NR, Warren RA. J, Aebersold R, Withers SG. J. Biol. Chem. 1993; 268: 14096
  • 59 Vaughan MD, Johnson K, DeFrees S, Tang X, Warren RA. J, Withers SG. J. Am. Chem. Soc. 2006; 128: 6300
  • 60 Hancock SM, Rich JR, Caines ME. C, Strynadka NC. J, Withers SG. Nat. Chem. Biol. 2009; 5: 508
  • 61 Rich JR, Cunningham A.-M, Gilbert M, Withers SG. Chem. Commun. 2011; 47: 10806
  • 62 Rich JR, Withers SG. Angew. Chem. Int. Ed. 2012; 51: 8640
  • 63 Yang G.-Y, Li C, Fischer M, Cairo CW, Feng Y, Withers SG. Angew. Chem. Int. Ed. 2015; 54: 5389
    • 64a Ito M, Mitsutake S, Tani M, Kita K. Methods Enzymol. 2000; 311: 682
    • 64b Ito M, Kurita T, Kita K. J. Biol. Chem. 1995; 270: 24370
    • 64c Mitsutake S, Kita K, Nakagawa T, Ito M. J. Biochem. 1998; 123: 859
    • 64d Kita K, Okino N, Ito M. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2000; 1485: 111
    • 65a Han Y.-B, Wu L, Rich JR, Huang F.-T, Withers SG, Feng Y, Yang G.-Y. Appl. Microbiol. Biotechnol. 2015; 99: 6715
    • 65b Huang F.-T, Han Y.-B, Feng Y, Yang G.-Y. J. Lipid Res. 2015; 56: 1836
    • 66a Ashida H, Hayashi S, Sakamoto Y, Tsuji Y, Yamamoto K, Kumagai H, Tochikura T. Biosci., Biotechnol., Biochem. 1995; 59: 2028
    • 66b Furusato M, Sueyoshi N, Mitsutake S, Sakaguchi K, Kita K, Okino N, Ichinose S, Omori A, Ito M. J. Biol. Chem. 2002; 277: 17300
    • 67a Brady RO, Formica JV, Koval GJ. J. Biol. Chem. 1958; 233: 1072
    • 67b Brady RO, Koval GJ. J. Am. Chem. Soc. 1957; 79: 2648
  • 68 Börgel D, van den Berg M, Hüller T, Andrea H, Liebisch G, Boles E, Schorsch C, van der Pol R, Arink A, Boogers I, van der Hoeven R, Korevaar K, Farwick M, Köhler T, Schaffer S. Metab. Eng. 2012; 14: 412
    • 69a Roberge JY, Beebe X, Danishefsky SJ. Science 1995; 269: 202
    • 69b Liang R, Yan L, Loebach J, Ge M, Uozumi Y, Sekanina K, Horan N, Gildersleeve J, Thompson C, Smith A, Biswas K, Still WC, Kahne D. Science 1996; 274: 1520