Synthesis 2021; 53(17): 2995-3000
DOI: 10.1055/a-1437-9917
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Synthesis of Tetrasilatetrathia[8]circulenes through C–I and C–H Silylation

Shuhei Akahori
a   Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
,
Tetsuaki Fujihara
b   Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
,
Yasushi Tsuji
b   Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
,
Hiroshi Shinokubo
a   Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
,
Yoshihiro Miyake
a   Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
› Author Affiliations
This work was supported by a Grant-in-Aid for Scientific Research in the Innovative Area ‘Soft Crystals (No. 2903)’ (JSPS KAKENHI grant JP20H04668) and ‘Precisely Designed Catalysts with Customized Scaffolding (No. 2702)’ (JSPS KAKENHI grant 16H01013) from MEXT, Japan. S. A. expresses his gratitude for a JSPS Research Fellowship for Young Scientists (JP18J22906).


Abstract

We have succeeded in the synthesis of various tetrasilatetrathia[8]circulenes with alkyl and aryl groups on the silicon atoms. We also disclosed the effect of phosphine ligands on palladium-catalyzed silylation of tetraiodotetrathienylene and rhodium-catalyzed intramolecular silylation of tetrasilyltetrathienylenes. Experimental and theoretical analysis revealed the effect of the substituents on the silicon atoms on their electronic property.

Supporting Information



Publication History

Received: 05 March 2021

Accepted after revision: 15 March 2021

Accepted Manuscript online:
15 March 2021

Article published online:
07 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Yamaguchi S, Tamao K. Bull. Chem. Soc. Jpn. 1996; 69: 2327
    • 1b Yamaguchi S, Tamao K. J. Chem. Soc., Dalton Trans. 1998; 3693
    • 1c Yamaguchi S, Tamao K. Chem. Lett. 2005; 34: 2
    • 1d Zhan X, Barlow S, Marder SR. Chem. Commun. 2009; 1948
    • 1e Zhao Z, He B, Tang BZ. Chem. Sci. 2015; 6: 5347
    • 2a Yamaguchi S, Xu C, Tamao K. J. Am. Chem. Soc. 2003; 125: 13662
    • 2b Xu C, Wakamiya A, Yamaguchi S. J. Am. Chem. Soc. 2005; 127: 1638
    • 2c Mouri K, Wakamiya A, Yamada H, Kajihara T, Yamaguchi S. Org. Lett. 2007; 9: 93
    • 2d Zhang F.-B, Adachi Y, Ooyama Y, Ohshita J. Organometallics 2016; 35: 2327
    • 2e Shintani R, Iino R, Nozaki K. J. Am. Chem. Soc. 2016; 138: 3635

      For C–Si formation using organometallic reagents, see:
    • 3a Gilman H, Gorsich RD. J. Am. Chem. Soc. 1955; 77: 6380
    • 3b Liu Y, Stringfellow TC, Ballweg D, Guzei IA, West R. J. Am. Chem. Soc. 2002; 124: 49
    • 3c Ohshita J, Nodono M, Kai H, Watanabe T, Kunai A, Komaguchi K, Shiotani M, Adachi A, Okita K, Harima Y, Yamashita K, Ishikawa M. Organometallics 1999; 18: 1453
    • 3d Li L, Xiang J, Xu C. Org. Lett. 2007; 9: 4877
    • 3e Shimizu M, Tatsumi H, Mochida K, Oda K, Hiyama T. Chem. Asian J. 2008; 3: 1238

      For C–Si formation by C–H bond activation, see:
    • 4a Ureshino T, Yoshida T, Kuninobu Y, Takai K. J. Am. Chem. Soc. 2010; 132: 14324
    • 4b Shibata T, Shizuno T, Sasaki T. Chem. Commun. 2015; 51: 7802
    • 4c Murai M, Okada R, Nishiyama A, Takai K. Org. Lett. 2016; 18: 4380
    • 4d Mitsudo K, Tanaka S, Isobuchi R, Inada T, Mandai H, Korenaga T, Wakamiya A, Murata Y, Suga S. Org. Lett. 2017; 19: 2564
    • 4e Murai M, Okada R, Asako S, Takai K. Chem. Eur. J. 2017; 23: 10861
    • 4f Zhou D, Gao Y, Liu B, Tan Q, Xu B. Org. Lett. 2017; 19: 4628

      For C–Si formation by C–Si bond activation, see:
    • 5a Liang Y, Zhang S, Xi Z. J. Am. Chem. Soc. 2011; 133: 9204
    • 5b Onoe M, Baba K, Kim Y, Kita Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2012; 134: 19477
    • 5c Kodama T, Chatani N, Tobisu M. J. Synth. Org. Chem. Jpn. 2018; 76: 1185

      For C–Si formation by C–I bond activation, see:
    • 6a Yamanoi Y, Taira T, Sato J, Nakamura I, Nishihara H. Org. Lett. 2007; 9: 4543
    • 6b Lesbani A, Kondo H, Yabusaki Y, Nakai M, Yamanoi Y, Nishihara H. Chem. Eur. J. 2010; 16: 13519
    • 6c Yabusaki Y, Ohshima N, Kondo H, Kusamoto T, Yamanoi Y, Nishihara H. Chem. Eur. J. 2010; 16: 5581
    • 7a Hensel T, Andersen NN, Plesner M, Pittelkow M. Synlett 2016; 27: 498
    • 7b Miyake Y, Shinokubo H. Chem. Commun. 2020; 56: 15605
    • 8a Nielsen CB, Brock-Nannestad T, Reenberg TK, Hammershøj P, Christensen JB, Stouwdam JW, Pittelkow M. Chem. Eur. J. 2010; 16: 13030
    • 8b Brock-Nannestad T, Nielsen CB, Schau-Magnussen M, Hammershøj P, Reenberg TK, Petersen AB, Trpcevski D, Pittelkow M. Eur. J. Org. Chem. 2011; 6320
    • 8c Nielsen CB, Brock-Nannestad T, Hammershøj P, Reenberg TK, Schau-Magnussen M, Trpcevski D, Hensel T, Salcedo R, Baryshnikov GV, Minaev BF, Pittelkow M. Chem. Eur. J. 2013; 19: 3898
    • 8d Hensel T, Trpcevski D, Lind C, Grosjean R, Hammershøj P, Nielsen CB, Brock-Nannestad T, Nielsen BE, Schau-Magnussen M, Minaev BF, Baryshnikov GV, Pittelkow M. Chem. Eur. J. 2013; 19: 17097
    • 8e Plesner M, Hensel T, Nielsen BE, Kamounah FS, Brock-Nannestad T, Nielsen CB, Tortzen CG, Hammerich O, Pittelkow M. Org. Biomol. Chem. 2015; 13: 5937
    • 8f Lousen B, Pedersen SK, Bols P, Hansen KH, Pedersen MR, Hammerich O, Bondarchuk S, Minaev B, Baryshnikov GV, Ågren H, Pittelkow M. Chem. Eur. J. 2020; 26: 4935
    • 9a Chen F, Hong YS, Shimizu S, Kim D, Tanaka T, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 10639
    • 9b Matsuo Y, Chen F, Kise K, Tanaka T, Osuka A. Chem. Sci. 2019; 10: 11006
    • 9c Matsuo Y, Tanaka T, Osuka A. Chem. Eur. J. 2020; 26: 8144
    • 9d Matsuo Y, Tanaka T, Osuka A. Chem. Lett. 2020; 49: 959
    • 9e Morimoto Y, Chen F, Matsuo Y, Kise K, Tanaka T, Osuka A. Chem. Asian J. 2021; 16: 648
    • 10a Xiong X, Deng C.-L, Minaev BF, Baryshnikov GV, Peng X.-S, Wong HN. C. Chem. Asian J. 2015; 10: 969
    • 10b Xiong X, Deng C.-L, Li Z, Peng X.-S, Wong HN. C. Org. Chem. Front. 2017; 4: 682
    • 11a Kato S, Serizawa Y, Sakamaki D, Seki S, Miyake Y, Shinokubo H. Chem. Commun. 2015; 51: 16944
    • 11b Nagata Y, Kato S, Miyake Y, Shinokubo H. Org. Lett. 2017; 19: 2718
    • 11c Akahori S, Sakai H, Hasobe T, Shinokubo H, Miyake Y. Org. Lett. 2018; 20: 304
    • 11d Kato S, Akahori S, Serizawa Y, Lin X, Yamauchi M, Yagai S, Sakurai T, Matsuda W, Seki S, Shinokubo H, Miyake Y. J. Org. Chem. 2020; 85: 62
    • 11e Akahori S, Sasamori T, Shinokubo H, Miyake Y. Chem. Eur. J. 2021; in press DOI: 10.1002/chem.202005077.
  • 12 A preliminary result of the synthesis of tetrasilatetrathia[8]circulenes 1 has already been reported by our group: Serizawa Y, Akahori S, Kato S, Sakai H, Hasobe T, Miyake Y, Shinokubo H. Chem. Eur. J. 2017; 23: 6948
    • 13a Chernichenko KY, Sumerin VV, Shpanchenko RV, Balenkova ES, Nenajdenko VG. Angew. Chem. Int. Ed. 2006; 45: 7367
    • 13b Chernichenko KY, Balenkova ES, Nenajdenko VG. Mendeleev Commun. 2008; 18: 171
    • 13c Dadvand A, Cicoira F, Chernichenko KY, Balenkova ES, Osuna RM, Rosei F, Nenajdenko VG, Perepichka DF. Chem. Commun. 2008; 5354
    • 13d Bukalov SS, Leites LA, Lyssenko KA, Aysin RR, Korlyukov AA, Zubavichus JV, Chernichenko KY, Balenkova ES, Nenajdenko VG, Antipin MY. J. Phys. Chem. A 2008; 112: 10949
    • 13e Gahungu G, Zhang J, Barancira T. J. Phys. Chem. A 2009; 113: 255
    • 13f Ivasenko O, MacLeod JM, Chernichenko KY, Balenkova ES, Shpanchenko RV, Nenajdenko VG, Rosei F, Perepinchka DF. Chem. Commun. 2009; 1192
    • 13g Li L, Zhao S, Li B, Xu L, Li C, Shi J, Wang H. Org. Lett. 2018; 20: 2181
    • 14a Fujimoto T, Suizu R, Yoshikawa H, Awaga K. Chem. Eur. J. 2008; 14: 6053
    • 14b Fujimoto T, Matsushita MM, Yoshikawa H, Awaga K. J. Am. Chem. Soc. 2008; 130: 15790
    • 14c Fujimoto T, Matsushita MM, Awaga K. Appl. Phys. Lett. 2010; 97: 123303
    • 14d Fujimoto T, Matsushita MM, Awaga K. J. Phys. Chem. C 2012; 116: 5240
    • 15a Niyomura O, Tokunaga M, Obora Y, Iwasawa T, Tsuji Y. Angew. Chem. Int. Ed. 2003; 42: 1287
    • 15b Niyomura O, Iwasawa T, Sawada N, Tokunaga M, Obora Y, Tsuji Y. Organometallics 2005; 24: 3468
    • 15c Ohta H, Tokunaga M, Obora Y, Iwai T, Iwasawa T, Fujihara T, Tsuji Y. Org. Lett. 2007; 9: 89
    • 15d Fujihara T, Semba K, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2010; 49: 1472
    • 16a Furukawa S, Kobayashi J, Kawashima T. J. Am. Chem. Soc. 2009; 131: 14192
    • 16b Furukawa S, Kobayashi J, Kawashima T. Dalton Trans. 2010; 39: 9329
  • 17 Yamaguchi S, Jin R.-Z, Tamao K. J. Organomet. Chem. 1998; 559: 73
  • 18 Tatsuno Y, Yoshida T, Otsuka S. Inorg. Synth. 1979; 19: 220