Synthesis 2021; 53(16): 2767-2776
DOI: 10.1055/a-1463-4266
short review

In the Pursuit of (Ald)Imine Surrogates for the Direct Asymmetric Synthesis of Non-Proteinogenic α-Amino Acids

a   Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, USA
b   Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, USA
› Author Affiliations
This work was supported by the NIH (R15GM116025) award.


Abstract

Nature remarkably employs posttranslational modifications of the 20 canonical α-amino acids to devise a far larger structural, conformational, and functional diversity found in non-proteinogenic amino acids (NPAAs), which ultimately translates into a plethora of complex biological functions. Synthetic chemists are continuously trying to reproduce and even extrapolate the repertoire of NPAA building blocks to build structural diversity into bioactive molecules and materials. The direct asymmetric functionalization of α-imino esters represents one of the most robust and attractive routes to NPAAs. This review summarizes the most prominent examples of bench-stable (ald)imine surrogates exploited for the synthesis of NPAAs, including our most recent results in the nucleophilic substitution of α-haloglycines and other α-halo­aminals. A synopsis of kinetic studies, reaction optimizations, and enantio­selective catalytic methods is also presented.

1 Introduction

2 Asymmetric Synthesis of Tertiary α-Substituted NPAAs

2.1 From N,O-Acetals (α-Hydroxy/Alkyloxy/Acetoxyglycines)

2.2 From α-Amido Sulfones

2.3 From α-Haloglycine Esters

2.4 From N,O-Bis(Boc) Hydroxyglycine

3 Asymmetric Synthesis of Acyclic Quaternary α,α-Disubstituted NPAAs

4 Concluding Remarks



Publication History

Received: 25 February 2021

Accepted after revision: 24 March 2021

Accepted Manuscript online:
24 March 2021

Article published online:
14 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Albericio F. Curr. Opin. Chem. Biol. 2004; 8: 211
    • 1b Davie EA. C, Mennen SM, Xu Y, Miller SJ. Chem. Rev. 2007; 107: 5759
    • 1c Soloshonok VA, Izawa K. Asymmetric Synthesis and Application of (-Amino Acids . Oxford University Press; Washington: 2009
    • 1d Blaskovich MA. Handbook on Syntheses of Amino Acids: General Routes for the Syntheses of Amino Acids. Oxford University Press; Oxford/New York: 2010
    • 1e Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Drug Discov. Today 2010; 15: 40
    • 1f Rabone J, Yue Y.-F, Chong SY, Stylianou KC, Bacsa J, Bradshaw D, Darling GR, Berry NG, Khimyak YZ, Ganin AY, Wiper P, Claridge JB, Rosseinsky MJ. Science 2010; 329: 1053

    • For a recent reviews on NPAAs biosynthesis and their applications, see:
    • 1g Hedges JB, Ryan KS. Chem. Rev. 2020; 120: 3161
    • 1h Drienovská I, Roelfes G. Nat. Catal. 2020; 3: 193
    • 2a Saaby S, Nakama K, Lie MA, Hazell RG, Jørgensen KA. Chem. Eur. J. 2003; 9: 6145
    • 2b Côté A, Boezio AA, Charette AB. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5405
    • 2c Song J, Shih H.-W, Deng L. Org. Lett. 2007; 9: 603

      For recent reviews, see:
    • 3a Ohfune Y, Shinada T. Eur. J. Org. Chem. 2005; 5127
    • 3b Vogt H, Bräse S. Org. Biomol. Chem. 2007; 5: 406
    • 3c Metz AE, Kozlowski MC. J. Org. Chem. 2015; 80: 1
    • 3d Cativiela C, Ordóñez M, Viveros-Ceballos JL. Tetrahedron 2020; 76: 130875
  • 4 For a selected recent example, see: Terada M, Machioka K, Sorimachi K. Angew. Chem. Int. Ed. 2009; 48: 2553
    • 5a Ferraris D, Dudding T, Young B, Drury WJ, Lectka T. J. Org. Chem. 1999; 64: 2168
    • 5b Ferraris D, Young B, Cox C, Dudding T, Drury WJ, Ryzhkov L, Taggi AE, Lectka T. J. Am. Chem. Soc. 2002; 124: 67
  • 6 Attrill R, Tye H, Cox LR. Tetrahedron: Asymmetry 2004; 15: 1681
  • 7 Mentink G, van Maarseveen JH, Hiemstra H. Org. Lett. 2002; 4: 3497
  • 8 Marques CS, Burke AJ. Tetrahedron 2013; 69: 10091
  • 9 You Y. e, Zhang L, Cui L, Mi X, Luo S. Angew. Chem. Int. Ed. 2017; 56: 13814
  • 10 Marcantoni E, Palmieri A, Petrini M. Org. Chem. Front. 2019; 6: 2142
    • 11a Gianelli C, Sambri L, Carlone A, Bartoli G, Melchiorre P. Angew. Chem. Int. Ed. 2008; 47: 8700
    • 11b Galzerano P, Agostino D, Bencivenni G, Sambri L, Bartoli G, Melchiorre P. Chem. Eur. J. 2010; 16: 6069
  • 12 Bae HY, Kim MJ, Sim JH, Song CE. Angew. Chem. Int. Ed. 2016; 55: 10825
  • 13 Kim MJ, Xue L, Liu Y, Paladhi S, Park SJ, Yan H, Song CE. Adv. Synth. Catal. 2017; 359: 811
    • 14a Kober R, Papadopoulos K, Miltz W, Enders D, Steglich W, Reuter H, Puff H. Tetrahedron 1985; 41: 1693
    • 14b Münster P, Steglich W. Synthesis 1987; 223
    • 14c Williams RM, Aldous DJ, Aldous SC. J. Chem. Soc., Perkin Trans. 1 1990; 171
    • 14d Roos EC, Hiemstra H, Speckamp WN, Kaptein B, Kamphuis J, Schoemaker HE. Synlett 1992; 451
  • 15 Kobayashi S, Matsubara R, Nakamura Y, Kitagawa H, Sugiura M. J. Am. Chem. Soc. 2003; 125: 2507
    • 16a Roche SP, Samanta SS, Gosselin MM. J. Chem. Commun. 2014; 50: 2632
    • 16b Samanta SS, Roche SP. J. Org. Chem. 2017; 82: 8514
  • 17 Samanta SS, Roche SP. Eur. J. Org. Chem. 2019; 6597
  • 18 Wasa M, Liu RY, Roche SP, Jacobsen EN. J. Am. Chem. Soc. 2014; 136: 12872
  • 19 Bendelsmith AJ, Kim SC, Wasa M, Roche SP, Jacobsen EN. J. Am. Chem. Soc. 2019; 141: 11414
  • 20 Xu H, Nazli A, Zou C, Wang Z.-P, He Y. Chem. Commun. 2020; 56: 14243
    • 21a Abermil N, Masson G, Zhu J. Adv. Synth. Catal. 2010; 352: 656
    • 21b Gao J, Chuan Y, Li J, Xie F, Peng Y. Org. Biomol. Chem. 2012; 10: 3730
    • 21c Hymel D, Burke TR. Jr. ChemMedChem 2017; 12: 202
    • 22a Roos EC, Lopez MC, Brook MA, Hiemstra H, Speckamp WN, Kaptein B, Kamphuis J, Schoemaker HE. J. Org. Chem. 1993; 58: 3259
    • 22b Asahara H, Inoue K, Tani S, Umezu K, Nishiwaki N. Adv. Synth. Catal. 2016; 358: 2817
    • 23a Chaume G, Van Severen M.-C, Marinkovic S, Brigaud T. Org. Lett. 2006; 8: 6123
    • 23b Simon J, Nguyen TT, Chelain E, Lensen N, Pytkowicz J, Chaume G, Brigaud T. Tetrahedron: Asymmetry 2011; 22: 309
    • 24a Huang G, Yang J, Zhang X. Chem. Commun. 2011; 47: 5587
    • 24b Husmann R, Sugiono E, Mersmann S, Raabe G, Rueping M, Bolm C. Org. Lett. 2011; 13: 1044
    • 24c Morisaki K, Sawa M, Nomaguchi J.-Y, Morimoto H, Takeuchi Y, Mashima K, Ohshima T. Chem. Eur. J. 2013; 19: 8417
    • 24d Morisaki K, Sawa M, Yonesaki R, Morimoto H, Mashima K, Ohshima T. J. Am. Chem. Soc. 2016; 138: 6194
    • 24e Winter M, Faust K, Himmelsbach M, Waser M. Org. Biomol. Chem. 2019; 17: 5731
    • 24f Winter M, Kim H, Waser M. Eur. J. Org. Chem. 2019; 7122
    • 24g Bhakta U, Kattamuri PV, Siitonen JH, Alemany LB, Kurti L. Org. Lett. 2019; 21: 9208
  • 25 Zaghouani M, Bogeholz LA. K, Mercier E, Wintermeyer W, Roche SP. Tetrahedron 2019; 75: 3216
  • 26 Zhao G, Samanta SS, Michieletto J, Roche SP. Org. Lett. 2020; 22: 5822
  • 27 Retini M, Bartolucci S, Bartoccini F, Mari M, Piersanti G. J. Org. Chem. 2019; 84: 12221
    • 28a Kobayashi S, Gustafsson T, Shimizu Y, Kiyohara H, Matsubara R. Org. Lett. 2006; 8: 4923
    • 28b Terada M, Sorimachi K. J. Am. Chem. Soc. 2007; 129: 292
    • 28c Jia Y.-X, Zhong J, Zhu S.-F, Zhang C.-M, Zhou Q.-L. Angew. Chem. Int. Ed. 2007; 46: 5565
    • 28d For a review, see: Gopalaiah K, Kagan HB. Chem. Rev. 2011; 111: 4599

      For recent reviews, see:
    • 29a Nájera C, Sansano JM. Chem. Rev. 2007; 107: 4584
    • 29b Mondal S, Chowdhury S. Adv. Synth. Catal. 2018; 360: 1884
    • 29c Zhang X.-X, Gao Y, Hu X.-S, Ji C.-B, Liu Y.-L, Yu J.-S. Adv. Synth. Catal. 2020; 362: 4763
    • 29d Yuan Z, Liu X, Liu C, Zhang Y, Rao Y. Molecules 2020; 25: 5270
  • 30 Zheng Y, Deng L. Chem. Sci. 2015; 6: 6510
  • 31 Shatskiy A, Axelsson A, Stepanova EV, Liu J.-Q, Temerdashev AZ, Kore BP, Blomkvist B, Gardner JM, Dinér P, Kärkäs MD. Chem. Sci. 2021; advance article; DOI: 10.1039/D1SC00658D.