Synthesis 2021; 53(20): 3777-3790
DOI: 10.1055/a-1513-9968
paper

α-Xanthylmethyl Ketones from α-Diazo ketones

,
Financial support from Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (PAPIIT-DGAPA) (Project IN208719) is gratefully acknowledged. P.L.-M. thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for a Ph.D. scholarship (No. 308233).


Abstract

A simple and efficient method to obtain α-xanthylmethyl ketones from α-diazo ketones is described. The reaction proceeds through a protonation/nucleophilic substitution sequence in the presence of p-toluenesulfonic acid and potassium ethyl xanthogenate as the nucleophile. As α-diazo ketones can be readily synthesized from ubiquitous carboxylic acids, a broad variety of xanthates can be obtained, including examples from naturally occurring substrates.

Supporting Information



Publication History

Received: 26 April 2021

Accepted after revision: 20 May 2021

Accepted Manuscript online:
20 May 2021

Article published online:
28 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zeise WC. J. Chem. Phys. 1822; 35: 173
  • 2 Chugaev L. Chem. Ber. 1899; 32: 3332
  • 3 Barton DH. R, McCombie SW. J. Chem. Soc., Perkin Trans. 1 1975; 1574
  • 4 Delduc P, Tailhan C, Zard SZ. Chem. Commun. 1988; 308
  • 5 For an account of the discovery and properties of the xanthate group transfer reaction, see: Zard SZ. Angew. Chem. Int. Ed. 1997; 36: 672
  • 6 For a review, see: Quiclet-Sire B, Zard SZ. Isr. J. Chem. 2017; 57: 202

    • For selected examples, see:
    • 7a Osornio YM, Cruz-Almanza R, Jiménez-Montaño V, Miranda LD. Chem. Commun. 2003; 2316
    • 7b Guerrero MA, Miranda LD. Tetrahedron Lett. 2006; 47: 2517
    • 7c Reyes-Gutiérrez PE, Torres-Ochoa RO, Martinez R, Miranda LD. Org. Biomol. Chem. 2009; 7: 1388
    • 7d Miranda LD, Icelo-Ávila E, Rentería-Gómez Á, Pila M, Marrero JG. Eur. J. Org. Chem. 2015; 4098
    • 9a Saicic NR, Zard SZ. Chem. Commun. 1996; 1631
    • 9b Boiteau L, Boivin J, Liard A, Quiclet-Sire B, Zard SZ. Angew. Chem. Int. Ed. 1998; 33: 1128
    • 9c Miranda LD, Zard SZ. Org. Lett. 2002; 4: 1135
    • 10a Perrier S, Takolpuckdee P. J. Polym. Sci., Part A: Polym. Chem. 2005; 43: 5347
    • 10b Postma A, Davis TP, Evans RA, Li G, Moad G, O’Shea MO. Macromolecules 2006; 39: 5293
    • 10c Veetil AT, Solomek T, Ngoy BP, Pavlíková N, Heger D, Klán P. J. Org. Chem. 2011; 76: 8232
  • 11 Adibhatla RM, Hatcher JF, Gusain A. Neurochem. Res. 2012; 37: 671
  • 12 Güzel Ö, Salman A. Bioorg. Med. Chem. 2006; 14: 7804
  • 13 Zard SZ. Acc. Chem. Res. 2018; 51: 1722
  • 14 Rodriguez R, Chapelon A.-S, Ollivier C, Santelli M. Tetrahedron 2009; 65: 7001

    • For reviews, see:
    • 15a Zhang Z, Wang J. Tetrahedron 2008; 64: 6577
    • 15b Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
  • 16 Candeias NR, Paterna R, Gois PM. P. Chem. Rev. 2016; 116: 2937
  • 17 Regitz M, Maas G. Reactivity toward Acids . In Diazo Compounds: Properties and Synthesis, Chap. 3, . Academic Press; Orlando: 1986: 96-165

    • For selected examples, see:
    • 18a Proctor LD, Warr AJ. Org. Process Res. Dev. 2002; 6: 884
    • 18b Kang K.-T, Kim ST, Hwang G.-S, Ryu DH. Angew. Chem. Int. Ed. 2017; 56: 3977
    • 18c Pinho VD, Gutmann B, Miranda LS. M, de Souza OM. A, Kappe CO. J. Org. Chem. 2014; 79: 1555
  • 19 López-Mendoza P, Miranda LD. Org. Biomol. Chem. 2020; 18: 3487
  • 20 Cuevas-Yañez E, García MA, de la Mora MA, Muchowski JM, Cruz-Almanza R. Tetrahedron Lett. 2003; 44: 4815
  • 21 Martin LJ, Marzinzik AL, Ley SV, Baxendale IR. Org. Lett. 2011; 13: 320
  • 22 Baumann M, Baxendale IR, Ley SV, Nikbin N. Beilstein J. Org. Chem. 2011; 7: 442
  • 23 Yang H, Jurkauskas V, Mackintosh N, Mogren T, Stephenson CR. J, Foster K, Brown W, Roberts E. Can. J. Chem. 2000; 78: 800
  • 24 Izawa K, Onishi T. Chem. Rev. 2006; 106: 2811
  • 25 Keipour H, Jalba A, Delage-Laurin L, Ollevier T. J. Org. Chem. 2017; 82: 3000