Synthesis 2022; 54(04): 887-909
DOI: 10.1055/a-1514-1049
special topic
Cycloadditions – Established and Novel Trends – in Celebration of the 70th Anniversary of the Nobel Prize Awarded to Otto Diels and Kurt Alder

Organocatalyzed Oxa-Diels–Alder Reactions: Recent Progress

Anup Biswas
a   Department of Chemistry, Hooghly Women’s College, Hooghly, West Bengal, India
,
Samrat Kundu
b   Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India   URL: www.msmlabiitkgp.com
,
Dhananjoy Pal
b   Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India   URL: www.msmlabiitkgp.com
,
Amit Pal
b   Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India   URL: www.msmlabiitkgp.com
,
Modhu Sudan Maji
b   Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India   URL: www.msmlabiitkgp.com
› Author Affiliations
M.S.M. gratefully acknowledge the Science & Engineering Research Board (SERB), Department of Science and Technology, New Delhi, India (Sanction No. CRG/2018/000317) for funding. S.K. thanks the University Grants Commission (UGC), India for a fellowship.


Abstract

The oxa-Diels–Alder reaction is a straightforward, atom-economical process for the construction of six-membered oxacycles, which are privileged structures due to their very common occurrence in several pharmaceuticals and natural products. As with many other asymmetric transformations, organocatalysis provides an elegant pathway to their synthesis via [4+2] annulation under mild reaction conditions. The oxa-Diels–Alder reaction utilizes either an α,β-unsaturated carbonyl as an oxa-diene with a suitable dienophile or a simple carbonyl as a dienophile with other dienes. A range of organocatalysts has been explored in the past decade to execute this strategy. The catalysts induce stereoselectivities via two basic reactivities: (1) The formation of chiral intermediates, or (2) selectively activating suitable reactants via a transition state. The present short review compiles organocatalyzed asymmetric oxa-Diels–Alder reactions published over the last ten years, along with detailed discussions on mechanistic approaches.

1 Introduction

2 Catalysis through Covalent Activation

2.1 N-Heterocyclic Carbenes

2.2 Amines

2.3 Isothiourea Catalysis

2.4 Phosphines

3 Catalysis through Non-Covalent Activation

3.1 Bifunctional Amines

3.2 Brønsted Acids

3.3 Guanidines

4 Multicatalysis through Both Covalent and Non-Covalent Activation

5 Conclusion



Publication History

Received: 17 April 2021

Accepted after revision: 20 May 2021

Accepted Manuscript online:
20 May 2021

Article published online:
13 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Boger DL. Tetrahedron 1983; 39: 2869
    • 1b Denmark SE, Thorarensen A. Chem. Rev. 1996; 96: 137
    • 1c Cativiela C, García JI, Mayoral JA, Salvatella L. Chem. Soc. Rev. 1996; 25: 209
    • 1d Diels O, Alder K. Justus Liebigs Ann. Chem. 1928; 460: 98
    • 1e Corey EJ, Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
    • 1f Corey EJ. Angew. Chem. Int. Ed. 2002; 41: 1650
    • 2a Sustmann R. Pure Appl. Chem. 1974; 40: 569
    • 2b Sustmann R. Tetrahedron Lett. 1971; 12: 2717
    • 3a Cossy J, Carrupt PA, Vogel P. In The Chemistry of Double-Bonded Functional Groups . Patai S. John Wiley and Sons; New York: 1989
    • 3b Woodward RB, Hoffmann R. The Conservation of Orbital Symmetry . Verlag Chemie; Weinheim: 1970
    • 4a Alemán J, Cabrera S. Chem. Soc. Rev. 2013; 42: 774
    • 4b Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
    • 4c Sheng F.-T, Wang J.-Y, Tan W, Zhang Y.-C, Shi F. Org. Chem. Front. 2020; 7: 3967
  • 5 Masson G, Lalli C, Benohoud M, Dagousset G. Chem. Soc. Rev. 2013; 42: 902
    • 6a Trost BM, Shen HC, Surivet J.-P. Angew. Chem. Int. Ed. 2003; 42: 3943
    • 6b Liu K, Chougnet A, Woggon W.-D. Angew. Chem. Int. Ed. 2008; 47: 5827
    • 6c Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao G.-Q, Barluenga S, Mitchell HJ. J. Am. Chem. Soc. 2000; 122: 9939
    • 6d Trost BM, Shen HC, Dong L, Surivet J.-P, Sylvain C. J. Am. Chem. Soc. 2004; 126: 11966
    • 6e Pratap R, Ram VJ. Chem. Rev. 2014; 114: 10476
  • 7 Yang L, Wang F, Chua PJ, Lv Y, Zhong L.-J, Zhong G. Org. Lett. 2012; 14: 2894
    • 8a Taylor JE, Davies AT, Douglas JJ, Churchill G, Smith AD. Tetrahedron: Asymmetry 2017; 28: 355
    • 8b Davies AT, Taylor JE, Douglas J, Collett CJ, Morrill LC, Fallan C, Slawin AM. Z, Churchill G, Smith AD. J. Org. Chem. 2013; 78: 9243
    • 8c Attaba N, Taylor JE, Slawin AM. Z, Smith AD. J. Org. Chem. 2015; 80: 9728
    • 8d Davies AT, Pickett PM, Slawin AM. Z, Smith AD. ACS Catal. 2014; 4: 2696
    • 9a Chen X, Song R, Liu Y, Ooi CY, Jin Z, Zhu T, Wang H, Hao L, Chi YR. Org. Lett. 2017; 19: 5892
    • 9b Li J.-L, Fu L, Wu J, Yang K.-C, Li Q.-Z, Gou X.-J, Peng C, Han B, Shen X.-D. Chem. Commun. 2017; 53: 6875
    • 9c Lee A, Scheidt KA. Chem. Commun. 2015; 51: 3407
    • 10a Zhang H.-M, Lv H, Ye S. Org. Biomol. Chem. 2013; 11: 6255
    • 10b Li Y, Chen K, Zhang Y, Sun D, Ye S. Chin. Chem. Lett. 2018; 29: 1209
    • 10c Chen K.-Q, Zhang H.-M, Wang D.-L, Sun D.-Q, Ye S. Org. Biomol. Chem. 2015; 13: 6694
    • 10d Liu L, Guo D, Wang J. Org. Lett. 2020; 22: 7025
    • 11a Jian T.-Y, Chen X.-Y, Sun L.-H, Ye S. Org. Biomol. Chem. 2013; 11: 158
    • 11b Leckie SM, Brown TB, Pryde D, Lebl T, Slawin AM. Z, Smith AD. Org. Biomol. Chem. 2013; 11: 3230
    • 11c Leckie SM, Fallan C, Taylor JE, Brown TB, Pryde D, Lébl T, Slawin AM. Z, Smith AD. Synlett 2013; 24: 1243
    • 12a Wang Y, Pan J, Dong J, Yu C, Li T, Wang X.-S, Shen S, Yao C. J. Org. Chem. 2017; 82: 1790
    • 12b Li Y, Liu T, Liang C. Mol. Catal. 2017; 441: 199
    • 12c Cheng J.-T, Chen X.-Y, Ye S. Org. Biomol. Chem. 2015; 13: 1313
    • 12d Shen L.-T, Shao P.-L, Ye S. Adv. Synth. Catal. 2011; 353: 1943
    • 13a Zhao X, Ruhl KE, Rovis T. Angew. Chem. Int. Ed. 2012; 51: 12330
    • 13b Lin L, Yang Y, Wang M, Lai L, Guo Y, Wang R. Chem. Commun. 2015; 51: 8134
    • 14a Lv H, Mo J, Fang X, Chi YR. Org. Lett. 2011; 13: 5366
    • 14b Prieto L, Sánchez-Díez E, Uria U, Reyes E, Carrillo L, Vicario JL. Adv. Synth. Catal. 2017; 359: 1678
    • 14c Fu Z, Sun H, Chen S, Tiwari B, Li G, Chi YR. Chem. Commun. 2013; 49: 261
    • 14d Fang X, Chen X, Chi YR. Org. Lett. 2011; 13: 4708
    • 14e Zhang Y, Huang J, Guo Y, Li L, Fu Z, Huang W. Angew. Chem. Int. Ed. 2018; 57: 4594
    • 14f O’Bryan McCusker E, Scheidt KA. Angew. Chem. Int. Ed. 2013; 52: 13616
  • 15 Lin Y.-J, Du L.-N, Kang T.-R, Liu Q.-Z, Chen Z.-Q, He L. Chem. Eur. J. 2015; 21: 11773
    • 16a Shi M.-L, Zhan G, Zhou S.-L, Du W, Chen Y.-C. Org. Lett. 2016; 18: 6480
    • 16b Maity R, Pan SC. Eur. J. Org. Chem. 2017; 871
    • 16c Das U, Huang C.-H, Lin W. Chem. Commun. 2012; 48: 5590
    • 17a Yang L, Huang W, He X.-H, Yang M.-C, Li X, He G, Peng C, Han B. Adv. Synth. Catal. 2016; 358: 2970
    • 17b Li J.-L, Yang K.-C, Li Y, Li Q, Zhu H.-P, Han B, Peng C, Zhi Y.-G, Gou X.-J. Chem. Commun. 2016; 52: 10617
    • 17c Dai Q.-S, Zhang X, Yang K.-C, Li M.-H, Yang J, Li Q.-Z, Feng X, Han B, Li J.-L. Adv. Synth. Catal. 2018; 360: 4435
    • 17d Katakam NK, Kim Y, Headley AD. Tetrahedron: Asymmetry 2017; 28: 1591
    • 17e Zhou D, Mao K, Zhang J, Yan B, Wang W, Xie H. Tetrahedron Lett. 2016; 57: 5649
  • 18 Zhou D, Yu X, Zhang J, Wang W, Xie H. Org. Lett. 2018; 20: 174
    • 19a Donslund BS, Monleón A, Larsen J, Ibsen L, Jørgensen KA. Chem. Commun. 2015; 51: 13666
    • 19b Skrzyńska A, Albrecht A, Albrecht Ł. Adv. Synth. Catal. 2016; 358: 2838
    • 19c Saktura M, Joachim B, Grzelak P, Albrecht Ł. Eur. J. Org. Chem. 2019; 6592
    • 20a Deng Y.-H, Chu W.-D, Zhang X.-Z, Yan X, Yu K.-Y, Yang L.-L, Huang H, Fan C.-A. J. Org. Chem. 2017; 82: 5433
    • 20b Chen P, Wang K, Guo W, Liu X, Liu Y, Li C. Angew. Chem. Int. Ed. 2017; 56: 3689
    • 20c Wang X, Fang T, Tong X. Angew. Chem. Int. Ed. 2011; 50: 5361
    • 20d Wang F, Luo C, Shen Y.-Y, Wang Z.-D, Li X, Cheng J.-P. Org. Lett. 2015; 17: 338
    • 21a Biswas A, Mondal H, Maji MS. J. Heterocycl. Chem. 2020; 57: 3818
    • 21b Merad J, Pons J.-M, Chuzel O, Bressy C. Eur. J. Org. Chem. 2016; 5589
    • 22a Belmessieri D, Morrill LC, Simal C, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2011; 133: 2714
    • 22b Morrill LC, Douglas J, Lebl T, Slawin AM. Z, Fox DJ, Smith AD. Chem. Sci. 2013; 4: 4146
    • 22c Smith SR, Leckie SM, Holmes R, Douglas J, Fallan C, Shapland P, Pryde D, Slawin AM. Z, Smith AD. Org. Lett. 2014; 16: 2506
    • 22d Young CM, Taylor JE, Smith AD. Org. Biomol. Chem. 2019; 17: 4747
    • 22e Morrill LC, Smith SM, Slawin AM. Z, Smith AD. J. Org. Chem. 2014; 79: 1640
    • 22f Neyyappadath RM, Cordes DB, Slawin AM. Z, Smith AD. Chem. Commun. 2017; 53: 2555
    • 22g Jin J.-H, Li X.-Y, Luo X, Fossey JS, Deng W.-P. J. Org. Chem. 2017; 82: 5424
    • 24a Ying Y, Chai Z, Wang H.-F, Li P, Zheng C.-W, Zhao G, Cai Y.-P. Tetrahedron 2011; 67: 3337
    • 24b Wang F, Li Z, Wang J, Li X, Cheng J.-P. J. Org. Chem. 2015; 80: 5279
    • 24c Pei C.-K, Jiang Y, Shi M. Org. Biomol. Chem. 2012; 10: 4355
    • 24d Li J.-L, Wang X.-H, Sun J.-C, Peng Y.-Y, Ji C.-B, Zeng X.-P. Molecules 2021; 26: 489
    • 25a Kano T, Maruyama H, Homma C, Maruoka K. Chem. Commun. 2018; 54: 3496
    • 25b Shen J, Liu D, An Q, Liu Y, Zhang W. Adv. Synth. Catal. 2012; 354: 3311
    • 25c Wang S, Rodriguez-Escrich C, Pericàs MA. Org. Lett. 2016; 18: 556
    • 26a Albrecht Ł, Dickmeiss G, Weise CF, Rodríguez-Escrich C, Jørgensen KA. Angew. Chem. Int. Ed. 2012; 51: 13109
    • 26b Weise CF, Lauridsen VH, Rambo RS, Iversen EH, Olsen M.-L, Jørgensen KA. J. Org. Chem. 2014; 79: 3537
  • 27 He X.-L, Zhao H.-R, Duan C.-Q, Du W, Chen Y.-C. Org. Lett. 2018; 20: 804
    • 28a Gao T.-P, Lin J.-B, Hu X.-Q, Xu P.-F. Chem. Commun. 2014; 50: 8934
    • 28b Gao T.-P, Liu D, Lin J.-B, Hu X.-Q, Wang Z.-Y, Xu P.-F. Org. Chem. Front. 2016; 3: 598
    • 28c Joshi H, Yadav A, Das A, Singh VK. J. Org. Chem. 2020; 85: 3202
    • 29a Mao Z, Lin A, Shi Y, Mao H, Li W, Cheng Y, Zhu C. J. Org. Chem. 2013; 78: 10233
    • 29b Qin J, Zhang Y, Liu C, Zhou J, Zhan R, Chen W, Huang H. Org. Lett. 2019; 21: 7337
    • 29c Li X, Kong X, Yang S, Meng M, Zhan X, Zeng M, Fang X. Org. Lett. 2019; 21: 1979
    • 29d Zhang M.-L, Wu Z.-J, Zhao J.-Q, Luo Y, Xu X.-Y, Zhang X.-M, Yuan W.-C. Org. Lett. 2016; 18: 5110
    • 30a Jiang X, Wang L, Kai M, Zhu L, Yao X, Wang R. Chem. Eur. J. 2012; 18: 11465
    • 30b Vishwanath M, Vinayagam P, Gajulapalli VP. R, Kesavan V. Asian J. Org. Chem. 2016; 5: 613
  • 31 Jiang X, Liu L, Zhang P, Zhong Y, Wang R. Angew. Chem. Int. Ed. 2013; 52: 11329
    • 32a Wu X, Xue L, Li D, Jia S, Ao J, Deng J, Yan H. Angew. Chem. Int. Ed. 2017; 56: 13722
    • 32b Liu Y, Wu X, Li S, Xue L, Shan C, Zhao Z, Yan H. Angew. Chem. Int. Ed. 2018; 57: 6491
    • 32c Beppu S, Arae S, Furusawa M, Arita K, Fujimoto H, Sumimoto M, Imahori T, Igawa K, Tomooka K, Irie R. Eur. J. Org. Chem. 2017; 6914
  • 33 Wang X, Yao W, Yao Z, Ma C. J. Org. Chem. 2012; 77: 2959
    • 34a Li Q, Zhou L, Shen X.-D, Yang K.-C, Zhang X, Dai Q.-S, Leng H.-J, Li Q.-Z, Li J.-L. Angew. Chem. Int. Ed. 2018; 57: 1913
    • 34b Cui L, Wang Y, Zhou Z. Tetrahedron: Asymmetry 2016; 27: 1056
    • 35a Lin Y, Hou X.-Q, Li B.-Y, Du D.-M. Adv. Synth. Catal. 2020; 362: 5728
    • 35b Xiang M, Li C.-Y, Song X.-J, Zou Y, Huang Z.-C, Li X, Tian F, Wang L.-X. Chem. Commun. 2020; 56: 14825
    • 35c Kim KS, Jang J, Kim DY. ChemistrySelect 2020; 5: 13259
    • 35d Zhou J, Wang M.-L, Gao X, Jiang G.-F, Zhou Y.-G. Chem. Commun. 2017; 53: 3531
    • 35e Zhang T, Chun M, Zhou J.-Y, Mei G.-J, Shi F. Adv. Synth. Catal. 2018; 360: 1128
    • 36a Hsiao C.-C, Raja S, Liao H.-H, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
    • 36b Yu X.-Y, Chen J.-R, Wei Q, Cheng H.-G, Liu Z.-C, Xiao W.-J. Chem. Eur. J. 2016; 22: 6774
    • 36c Wang Z, Sun J. Org. Lett. 2017; 19: 2334
    • 36d Gharui C, Singh S, Pan SC. Org. Biomol. Chem. 2017; 15: 7272
    • 36e You Y, Li T.-T, Yuan S.-P, Xie K.-X, Wang Z.-H, Zhao J.-Q, Zhou M.-Q, Yuan W.-C. Chem. Commun. 2020; 56: 439
  • 37 Feng S, Yang B, Chen T, Wang R, Deng Y.-H, Shao Z. J. Org. Chem. 2020; 85: 5231
    • 39a Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
    • 39b Tu M.-S, Liu S.-J, Zhong C, Zhang S, Zhang H, Zheng Y.-L, Shi F. J. Org. Chem. 2020; 85: 5403
    • 39c Wu S.-F, Tu M.-S, Hang Q.-Q, Zhang S, Ding H, Zhang Y.-C, Shi F. Org. Biomol. Chem. 2020; 18: 5388
    • 40a Zhang Y.-C, Zhu Q.-N, Yang X, Zhou L.-J, Shi F. J. Org. Chem. 2016; 81: 1681
    • 40b Zhang L, Liu Y, Liu K, Liu Z, He N, Li W. Org. Biomol. Chem. 2017; 15: 8743
    • 40c Zhang Z.-P, Xie K.-X, Yang C, Li M, Li X. J. Org. Chem. 2018; 83: 364
    • 40d Yang G.-H, Zhao Q, Zhang Z.-P, Zheng H.-L, Chen L, Li X. J. Org. Chem. 2019; 84: 7883
  • 41 Li T.-Z, Geng C.-A, Yin X.-J, Yang T.-H, Chen X.-L, Huang X.-Y, Ma Y.-B, Zhang X.-M, Chen J.-J. Org. Lett. 2017; 19: 429
  • 42 Ukis R, Schneider C. J. Org. Chem. 2019; 84: 7175
    • 43a Guin J, Rabalakos C, List B. Angew. Chem. Int. Ed. 2012; 51: 8859
    • 43b Liu L, Kim H, Xie Y, Farès C, Kaib PS. J, Goddard R, List B. J. Am. Chem. Soc. 2017; 139: 13656
    • 44a Guan X.-K, Liu G.-F, An D, Zhang H, Zhang S.-Q. Org. Lett. 2019; 21: 5438
    • 44b Zhang H, Liu G, Guan X, Gao J, Qin X, Jiang G, Sun D, Zhang G, Zhang S. Eur. J. Org. Chem. 2019; 7264
    • 45a Xie Y, List B. Angew. Chem. Int. Ed. 2017; 56: 4936
    • 45b Zhu Z, Odagi M, Supantanapong N, Xu W, Saame J, Kirm H.-U, Abboud KA, Leito I, Seidel D. J. Am. Chem. Soc. 2020; 142: 15252
  • 46 Gheewala CD, Hirschi JS, Lee W.-H, Paley DW, Vetticatt MJ, Lambert TH. J. Am. Chem. Soc. 2018; 140: 3523
    • 47a Dong S, Liu X, Chen X, Mei F, Zhang Y, Gao B, Lin L, Feng X. J. Am. Chem. Soc. 2010; 132: 10650
    • 47b Terada M, Nii H. Chem. Eur. J. 2011; 17: 1760
    • 48a Cui H.-L, Tanaka F. Chem. Eur. J. 2013; 19: 6213
    • 48b Cui H.-L, Chouthaiwale PV, Yin F, Tanaka F. Asian J. Org. Chem. 2016; 5: 153
    • 48c Cui H.-L, Chouthaiwale PV, Yin F, Tanaka F. Org. Biomol. Chem. 2016; 14: 1777
    • 49a Parasuraman P, Begum Z, Chennapuram M, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Tokiwa S, Takeshita M, Nakano H. RSC Adv. 2020; 10: 17486
    • 49b Zhang D, Tanaka F. RSC Adv. 2016; 6: 61454
  • 50 Sinha D, Perera S, Zhao JC.-G. Chem. Eur. J. 2013; 19: 6976