Synthesis 2021; 53(20): 3836-3846
DOI: 10.1055/a-1516-7917
paper

Applications of Ytterbium(II) Reagent as Grignard Reagent and Single-Electron Transfer Reagent in the Synthesis of 3-Substituted 2-Oxindoles

Pengkai Wang
,
Xuyan Cao
,
Songlin Zhang
We gratefully acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Scientific and Technologic Infrastructure of Suzhou (No. SZS201207), and the National Natural Science Foundation of China (No. 21072143) for financial support.


Abstract

The use of ytterbium(II) reagent as both nucleophilic reagent and single-electron transfer reagent in the reaction of isatin derivatives with ytterbium(II) reagent is reported. From a synthetic point of view, a general, efficient, and experimentally simple one-pot method for the preparation of 3-substituted 2-oxindoles was developed.

Supporting Information



Publication History

Received: 16 April 2021

Accepted after revision: 25 May 2021

Accepted Manuscript online:
25 May 2021

Article published online:
23 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Reviews:
    • 1a Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
    • 1b Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
    • 1c Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748 ; Angew. Chem. 2007, 119, 8902
    • 2a Pugh DS, Klein JE. M. N, Perry A, Taylor RJ. K. Synlett 2010; 934
    • 2b Ortega-Martínez A, de Lorenzo R, Sansano JM, Nájera C. Tetrahedron 2018; 74: 253
    • 2c Trost BM, Zhang Y. Chem. Eur. J. 2011; 17: 2916
    • 2d Jang YJ, Yoon H, Lautens M. Org. Lett. 2015; 17: 3895
    • 2e Ghosh S, De S, Kakde BN, Bhunia S, Adhikary A, Bisai A. Org. Lett. 2012; 14: 5864
    • 2f Kinthada LK, Medisetty SR, Parida A, Babu KN, Bisai A. J. Org. Chem. 2017; 82: 8548
  • 3 Mandal T, Chakraborti G, Dash J. Tetrahedron Lett. 2020; 61: 152109
  • 4 Zhao L.-M, Zhang A.-L, Zhang J.-H, Gao H.-S, Zhou W. J. Org. Chem. 2016; 81: 5487
    • 5a Nair V, Ros S, Jayan CN, Viji S. Synthesis 2003; 2542
    • 5b Alcaide B, Almendros P, Rodriguez-Acebes R. J. Org. Chem. 2005; 70: 3198
    • 5c Schneider U, Kobayashi S. Angew. Chem. Int. Ed. 2007; 46: 5909
  • 6 Wu H, Xue F, Xiao X, Qin Y. J. Am. Chem. Soc. 2010; 132: 14052
  • 7 Wang T, Hao X.-Q, Huang J.-J, Wang K, Gong J.-F, Song M.-P. Organometallics 2014; 33: 194
  • 8 Cao Z.-Y, Zhang Y, Ji C.-B, Zhou J. Org. Lett. 2011; 13: 6398
  • 9 Vyas DJ, Froehlich R, Oestreich M. J. Org. Chem. 2010; 75: 6720
    • 10a Deng Y.-H, Zhang X.-Z, Yu K.-Y, Yan X, Du J.-Y, Huang H, Fan C.-A. Chem. Commun. 2016; 52: 4183
    • 10b Volk B, Simig G. Eur. J. Org. Chem. 2003; 3991
    • 10c Li S.-S, Zhu S, Chen C, Duan K, Liu Q, Xiao J. Org. Lett. 2019; 21: 1058
    • 10d Li M, Zan L, Prajapati D, Hu W. Org. Biomol. Chem. 2012; 10: 8808
    • 11a Girard P, Namy JL, Kagan HB. New J. Chem. 1977; 1
    • 11b Girard P, Namy JL, Kagan HB. J. Am. Chem. Soc. 1980; 102: 2693
    • 12a Parmar D, Matsubara H, Price K, Spain M, Procter DJ. J. Am. Chem. Soc. 2012; 134: 12751
    • 12b Szostak M, Spain M, Procter DJ. Chem. Soc. Rev. 2013; 42: 9155
    • 12c Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
    • 12d Shi S, Szostak M. Molecules 2017; 22: 2018 , DOI: 10.3390/molecules22112018
    • 12e Shi S, Szostak M. Org. Lett. 2015; 17: 5144
    • 12f Chciuk TV, Anderson WR. Jr, Flowers RA. J. Am. Chem. Soc. 2018; 140: 15342
    • 12g Ramírez-Solís A, Bartulovich CO, Chciuk TV, Hernández-Cobos J, Saint-Martin H, Maron L, Anderson WR. Jr, Li AM, Flowers RA. J. Am. Chem. Soc. 2018; 140: 16731
    • 12h Maity S, Flowers RA. J. Am. Chem. Soc. 2019; 141: 3207
    • 12i Huang F, Zhang S. Org. Lett. 2019; 21: 7430
    • 12j Johnston D, Francon N, Edmonds DJ, Procter DJ. Org. Lett. 2001; 3: 2001
  • 13 Molander GA, Etter JB. J. Org. Chem. 1986; 51: 1778
  • 14 Ogawa A, Nanke T, Takami N, Sekiguchi M, Kambe N, Sonoda NA. Organomet. Chem. 1995; 9: 461
  • 15 Kondo T, Akazome M, Watanabe Y. J. Chem. Soc., Chem. Commun. 1991; 757
  • 16 Ogawa A, Ohya S, Sumino Y, Sonoda N, Hirao T. Tetra­hedron Lett. 1997; 38: 9017
    • 17a Hou Z, Taniguchi H, Fujiwara Y. Chem. Lett. 1987; 16: 305
    • 17b Hou Z, Yamazaki H, Kobayashi K, Fujiwara Y, Taniguchi H. J. Chem. Soc., Chem. Commun. 1992; 722
    • 17c Fukagawa T, Fujiwara Y, Taniguchi H. Chem. Lett. 1982; 11: 601
    • 17d Yokoo K, Fukagawa T, Yamanaka Y, Taniguchi H, Fujiwara Y. J. Org. Chem. 1984; 49: 3237
    • 17e Hou Z, Mine N, Fujiwara Y, Taniguchi H. J. Chem. Soc., Chem. Commun. 1985; 1700
    • 17f Zhang X.-X, Zheng S.-L, Zhang S.-L. RSC Adv. 2017; 7: 54254
    • 17g Liu X, Xiang L, Louyriac E, Maron L, Leng X, Chen Y. J. Am. Chem. Soc. 2019; 141: 138
    • 18a Wang J, Zhang Y, Bao W. Synth. Commun. 1996; 26: 2473
    • 18b Li Z, Zhang Y. Tetrahedron Lett. 2001; 42: 8507
    • 18c Fan X, Zhang Y. Tetrahedron Lett. 2002; 43: 5475
    • 18d Di J, Zhang S. Synlett 2008; 1491
    • 18e Liu X, Zhang S, Di J. Synthesis 2009; 2749
    • 18f Hu Y, Zhao T, Zhang S. Chem. Eur. J. 2010; 16: 1697
    • 18g Li Y, Hu Y.-Y, Zhang S.-L. Chem. Commun. 2013; 49: 10635
    • 18h Tu Y, Zhou L, Yin R, Lv X, Flowers RA. II, Choquette KA, Liu H, Niu Q, Wang X. Chem. Commun. 2012; 48: 11026
    • 18i You B, Shen M, Xie G, Mao H, Lv X, Wang X. Org. Lett. 2018; 20: 530
  • 19 Preparation of (2-methylallyl)ytterbium(II) bromide: 3-bromo-2-methylpropene (0.11 mL, 1.1 mmol), Yb powder (0.173 g, 1 mmol) in anhydrous THF (5 mL) and a catalytic amount of I2 were mixed under a nitrogen atmosphere at room temperature. The mixture was stirred for 2 h to obtain a deep-purple solution.