Synthesis 2021; 53(18): 3390-3396
DOI: 10.1055/a-1528-1632
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Electron-Accepting π-Conjugated Compound Containing Cyano-Substituted Naphthobisthiadiazole as Nonfullerene Acceptor in Organic Solar Cells

Seihou Jinnai
a   The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
,
Ayumi Oi
a   The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
,
Takuji Seo
a   The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
,
Taichi Moriyama
b   Ishihara Sangyo Kaisha, Ltd., 3-1 Nishi-shibukawa 2-chome, Kusatsu, Shiga 525-0025, Japan
,
Ryunosuke Minami
c   Osaka Prefecture University College of Technology, 26-12 Saiwai, Neyagawa, Osaka 572-8572, Japan
,
Suguru Higashida
c   Osaka Prefecture University College of Technology, 26-12 Saiwai, Neyagawa, Osaka 572-8572, Japan
,
Yutaka Ie
a   The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
d   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Japan
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science [JSPS KAKENHI Grant-in-Aid for Scientific Research (B) 20H02814, Grant-in-Aid for Challenging Research (Exploratory) 20K21224, Grant-in-Aid for Transformative Research Areas (A) 20H05841, Grant-in-Aid for Fostering Joint International Research (B) 20KK0123, and Grant-in-Aid for Early-Career Scientists 20K15352], Core Research for Evolutional Science and Technology (CREST, J205101030), New Energy and Industrial Technology Development Organization (NEDO, 21500248-0), and Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT, Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials). Y.I. is grateful to the Takahashi Industrial and Economic Research Foundation and Nagase Science Technology Foundation.


This manuscript is dedicated to Professor Shinji Murai in honor of his pioneering C–H activation research.

Abstract

The incorporation of electron-accepting units into π-conjugated systems can allow the modulation of the physical properties and frontier orbital energy levels of the molecules. An electron-accepting π-conjugated compound (CNNTz-TR) containing cyano-substituted naphthobisthiadiazole (CNNTz) was synthesized via a nucleophilic substitution reaction as the key step. Owing to the presence of the cyano groups, CNNTz-TR affords a low-lying lowest unoccupied molecular orbital energy level. Organic solar cells based on the blend films of CNNTz-TR and a low-bandgap donor exhibited moderate power conversion efficiencies. The results showed that embedding the CNNTz unit into the π-conjugated backbone is an effective approach for designing electron-accepting semiconducting materials.

Supporting Information



Publication History

Received: 16 April 2021

Accepted after revision: 14 June 2021

Accepted Manuscript online:
14 June 2021

Article published online:
12 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Li G, Yang Y. Nat. Photonics 2012; 6: 1531
    • 1b Inganäs O. Adv. Mater. 2018; 30: 1800388
    • 1c Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Chem. Rev. 2015; 115: 12666
    • 1d Chang S.-Y, Cheng P, Li G, Yang Y. Joule 2018; 2: 1039
    • 2a Yu G, Ga J, Hummelen JC, Wudl F, Heeger AJ. Science 1995; 270: 1796
    • 2b Wadsworth A, Hamid Z, Kosco J, Gasparini N, McCulloch I. Adv. Mater. 2020; 32: 2001763
    • 3a Park S, Kim T, Yoon S, Koh CW, Woo HY, Son HJ. Adv. Mater. 2020; 32: 2002217
    • 3b Ilmi D, Haque A, Khan MS. Org. Electron. 2018; 58: 53
    • 3c Sun H, Chen F, Chen Z.-K. Mater. Today 2019; 24: 94
    • 3d Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I. Chem. Soc. Rev. 2019; 48: 1596
  • 5 Mataka S, Takahashi K, Ikezaki Y, Hatta T, Tori-i A, Tashiro M. Bull. Chem. Soc. Jpn. 1991; 64: 68
    • 6a Osaka I, Shimawaki M, Mori H, Doi I, Miyazaki E, Koganezawa T, Takimiya K. J. Am. Chem. Soc. 2012; 134: 3498
    • 6b Vohra V, Kawashima K, Kakara T, Koganezawa T, Osaka I, Takimiya K, Murata H. Nat. Photon. 2015; 9: 403
    • 6c Kawashima K, Tamai Y, Ohkita H, Osaka I, Takimiya K. Nat. Commun. 2015; 6: 10085
    • 6d Ie Y, Sasada S, Karakawa M, Aso Y. Org. Lett. 2015; 17: 4580
    • 7a Chatterjee S, Ie Y, Karakawa M, Aso Y. Adv. Funct. Mater. 2016; 26: 1161
    • 7b Chatterjee S, Ie Y, Aso Y. ACS Omega 2018; 3: 1161
  • 8 Saito M, Fukuhara T, Kamimura S, Ichikawa H, Yoshida H, Koganezawa T, Ie Y, Tamai Y, Kim HD, Ohkita H, Osaka I. Adv. Energy Mater. 2020; 10: 1903278
  • 9 Chatterjee S, Ie Y, Seo T, Moriyama T, Wetzelaer G.-JA. H, Blom PW. M, Aso Y. NPG Asia Mater. 2018; 10: 1016
  • 10 Iguchi K, Mikie T, Saito M, Komeyama K, Seo T, Ie Y, Osaka I. Chem. Mater. 2021; 33: 2218
  • 11 Suman, Singh SP. J. Mater. Chem. A 2019; 7: 22701
  • 12 Casey A, Han Y, Fei Z, White AJ. P, Anthopoulos TD, Heeney M. J. Mater. Chem. C 2015; 3: 265
  • 13 Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications . Wiley; New York: 1984
  • 14 Jinnai S, Ie Y, Karakawa M, Aernouts T, Nakajima Y, Mori S, Aso Y. Chem. Mater. 2016; 28: 1705
  • 15 Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv. Mater. 2016; 28: 9423
  • 16 Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ. Adv. Mater. 2006; 18: 789
  • 17 Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J. Am. Chem. Soc. 2017; 139: 7148