RSS-Feed abonnieren
DOI: 10.1055/a-1529-7739
[4+n] Annulation Reactions Using ortho-Chloromethyl Anilines as Aza-ortho-Quinone Methide Precursors
Authors
We thank the National Natural Science Foundation of China (Grant No. 21702121) and the 111 Project (D20015) for support of our research in this area.

Abstract
Aza-ortho-quinone methides are important reactive intermediates that have found broad applications in synthetic chemistry. Recently, 1,4-elimination of ortho-chloromethyl aniline derivatives has emerged as a novel, powerful and convenient method for aza-ortho-quinone methide generation. This review will highlight the recent applications of aza-ortho-quinone methide precursors in annulation reactions to access various biologically important nitrogen-containing heterocycles. The general mechanisms are briefly discussed as well.
1 Introduction
2 [4+n] Annulation Reactions Using ortho-Chloromethyl Anilines as Aza-ortho-Quinone Methide Precursors
2.1 [4+2] Annulation Reactions
2.2 [4+1] Annulation Reactions
2.3 [4+3] Annulation Reactions
3 Conclusion and Perspective
Key words
annulation - nitrogen-containing heterocycles - aza-ortho-quinone methides - ortho-chloromethyl anilines - 4-atom unitsPublikationsverlauf
Eingereicht: 27. Mai 2021
Angenommen nach Revision: 16. Juni 2021
Accepted Manuscript online:
16. Juni 2021
Artikel online veröffentlicht:
27. Juli 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Joule JA, Mills K. Heterocyclic Chemistry, 5th ed. Blackwell; Oxford: 2010
- 2 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 3a Wojciechowski K. Eur. J. Org. Chem. 2001; 3587
- 3b Quinone Methides . Rokita SE. John Wiley & Sons; Hoboken: 2009
- 3c Wang Z, Sun J. Synthesis 2015; 47: 3629
- 3d Garuana L, Fochi M, Bernardi L. Molecules 2015; 20: 11733
- 3e Jaworski AA, Scheidt KA. J. Org. Chem. 2016; 81: 10145
- 3f Spivey A, Nielsen C, Abas H. Synthesis 2018; 50: 4008
- 3g Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926
- 4 Ma Y.-H, He X.-Y, Yang Q.-Q, Boucherif A, Xuan J. Asian J. Org. Chem. 2021; 10: 1233
- 5a Mao Y.-L, Boekelheide V. J. Org. Chem. 1980; 45: 1547
- 5b Consonni R, Croce PD, Ferraccioli R, La Rosa C. J. Chem. Soc., Perkin Trans. 1 1996; 1809
- 5c Martín N, Martínez-Grau A, Sánchez L, Seoane C, Torres M. J. Org. Chem. 1998; 63: 8074
- 5d Ohno M, Sato H, Eguchi S. Synlett 1999; 207
- 5e Zakrzewski P, Gowan M, Trimble LA, Lau CK. Synthesis 1999; 1893
- 5f Wojciechowski K, Kosinski S. Eur. J. Org. Chem. 2002; 947
- 6a Burgess EM, McCullagh L. J. Am. Chem. Soc. 1966; 88: 1580
- 6b Mukhina OA, Bhuvan Kumar NN, Arisco TM, Valiulin RA, Metzel GA, Kutateladze AG. Angew. Chem. Int. Ed. 2011; 50: 9423
- 6c Kuznetsov DM, Mukhina OA, Kutateladze AG. Angew. Chem. Int. Ed. 2016; 55: 6988
- 6d Liu Y.-Y, Yu X.-Y, Chen J.-R, Qiao M.-M, Qi X, Shi D.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2017; 56: 9527
- 6e Kuznetsov DM, Kutateladze AG. J. Am. Chem. Soc. 2017; 139: 16584
- 6f Liang D, Rao L, Xiao C, Chen J.-R. Org. Lett. 2019; 21: 8783
- 7a Mugrage B, Diefenbacher C, Somers J, Parker D, Parker TT. Tetrahedron Lett. 2000; 41: 2047
- 7b Li G, Liu H, Lv G, Wang Y, Fu Q, Tang Z. Org. Lett. 2015; 17: 4125
- 7c Mei G.-J, Zhu Z.-Q, Zhao J.-J, Bian C.-Y, Chen J, Chen R.-W, Shi F. Chem. Commun. 2017; 53: 2768
- 8 Steinhagen H, Corey EJ. Angew. Chem. Int. Ed. 1999; 38: 1928
- 9a Sridharan V, Suryavanshi PA, Carlos Menendez J. Chem. Rev. 2011; 111: 7157
- 9b
Trost BM.
Science 1991; 254: 1471
Reference Ris Wihthout Link
- 10a Steinhagen H, Corey EJ. Org. Lett. 1999; 1: 823
- 10b Omura S, Nakagawa A. Tetrahedron Lett. 1981; 22: 2199
- 10c Hill ML, Raphael RA. Tetrahedron 1990; 46: 4587
- 10d Morimoto Y, Shirahama H. Tetrahedron 1996; 52: 10609
- 11a Avemaris F, Vanderheiden S, Bräse S. Tetrahedron 2003; 59: 6785
- 11b Keck D, Vanderheiden S, Bräse S. Eur. J. Org. Chem. 2006; 21: 4916
- 12 Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T. Tetrahedron Lett. 1993; 34: 2355
- 13a Boal BW, Schammel AW, Garg NK. Org. Lett. 2009; 11: 3458
- 13b Schammel AW, Boal BW, Zu L, Mesganaw T, Garg NK. Tetrahedron 2010; 66: 4687
- 14a May JA, Zeidan RK, Stoltz BM. Tetrahedron Lett. 2003; 44: 1203
- 14b May JA, Stoltz BM. Tetrahedron 2006; 62: 5262
- 15a Wu H.-X, Xue F, Xiao X, Qin Y. J. Am. Chem. Soc. 2010; 132: 14052
- 15b Du Y, Wu H.-X, Song H, Qin Y, Zhang D. Chin. J. Chem. 2012; 30: 1970
- 16 Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 17 Lei L, Yao Y.-Y, Jiang L.-J, Lu X, Liang C, Mo D.-L. J. Org. Chem. 2020; 85: 3059
- 18 Jiang S.-P, Lu W.-Q, Liu Z, Wang G.-W. J. Org. Chem. 2018; 83: 1959
- 19 Lee A, Younai A, Price CK, Izquierdo J, Mishra RK, Scheidt KA. J. Am. Chem. Soc. 2014; 136: 10589
- 20 Ji H, He C, Gao H, Fu W, Xu J. Synthesis 2021; 53: 1349
- 21 Wang H.-Q, Ma W, Sun A, Sun X.-Y, Jiang C, Zhang Y.-C, Shi F. Org. Biomol. Chem. 2021; 19: 1334
- 22a Liang D, Xiao W.-J, Chen J.-R. Synthesis 2020; 52: 2469
- 22b Cheng X, Zhou S.-J, Xu G.-Y, Wang L, Yang Q.-Q, Xuan J. Adv. Synth. Catal. 2020; 362: 523
- 22c Liang D, Tan L.-P, Xiao W.-J, Chen J.-R. Chem. Commun. 2020; 56: 3777
- 23 Zheng Y, Tu L, Li N, Huang R, Feng T, Sun H, Li Z, Liu J. Adv. Synth. Catal. 2019; 361: 44
- 24a Xuan J, Cao X, Cheng X. Chem. Commun. 2018; 54: 5154
- 24b Bouakher AE, Martel A, Comesse S. Org. Biomol. Chem. 2019; 17: 8467
- 25 Jin Q, Gao M, Zhang D, Jiang C, Yao N, Zhang J. Org. Biomol. Chem. 2018; 16: 7336
- 26a Joule JA. Product Class 13: Indole and Its Derivatives. In Hetarenes and Related Ring Systems: Fused Five-Membered Hetarenes with One Heteroatom, Science of Synthesis Vol. 10. Thomas EJ. Thieme; Stuttgart: 2001
- 26b Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 26c Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 26d Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
- 26e Hua T.-B, Xiao C, Yang Q.-Q, Chen J.-R. Chin. Chem. Lett. 2020; 31: 311
- 27 Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Rev. 2015; 115: 5301
- 28 Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
- 29 Yang Q.-Q, Xiao C, Lu L.-Q, An J, Tan F, Li B.-J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 9137
- 30 Yang Q.-Q, Wang Q, An J, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2013; 19: 8401
- 31 Lu L.-Q, Zhang J.-J, Li F, Cheng Y, An J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2009; 48: 9542
- 32 Huang H, Yang Y, Zhang X, Zeng W, Liang Y. Tetrahedron Lett. 2013; 54: 6049
- 33a Hovey MT, Check CT, Sipher AF, Scheidt KA. Angew. Chem. Int. Ed. 2014; 53: 9603
- 33b Sharma HA, Hovey MT, Scheidt KA. Chem. Commun. 2016; 52: 9283
- 34 Jong JA. W, Bao X, Wang Q, Zhu J. Helv. Chim. Acta 2019; 102: e1900002
- 35 Gui H.-Z, Wu X.-Y, Wei Y, Shi M. Adv. Synth. Catal. 2019; 361: 5466
- 36 Eckert KE, Lepore AJ, Ashfeld BL. Helv. Chim. Acta 2019; 102: e1900192
- 37 Hua T.-B, Chao F, Wang L, Yan CY, Xiao C, Yang Q.-Q, Xiao W.-J. Adv. Synth. Catal. 2020; 362: 2615
- 38 Shi Y, Wang G, Wang H, Deng B, Gao T, Wang J, Guo H, Wu M, Sun S. New J. Chem. 2020; 44: 14477
- 39a Harmata M. Adv. Synth. Catal. 2006; 348: 2297
- 39b Jones DE, Harmata M. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses . Nishiwaki N. John Wiley & Sons; Hoboken: 2014
- 40a Harmata M. Chem. Commun. 2010; 46: 8886
- 40b Harmata M. Chem. Commun. 2010; 46: 8904
- 40c Lohse AG, Hsung RP. Chem. Eur. J. 2011; 17: 3812
- 41 Zhan G, Shi M.-L, He Q, Du W, Chen Y.-C. Org. Lett. 2015; 17: 4750
- 42 Liu J.-Y, Lu H, Li C.-G, Liang Y.-M, Xu P.-F. Synlett 2016; 27: 1287
- 43 Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
- 44a Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
- 44b Li Y, Zhang Z. Eur. J. Org. Chem. 2019; 2989
- 45 Hua T.-B, Yang Q.-Q, Xiao W.-J. Chin. J. Org. Chem. 2020; 40: 3559
- 46 Chen L, Yang G, Wang J, Jia Q, Wei J, Du Z. RSC Adv. 2015; 5: 76696
- 47 Zhi Y, Zhao K, Shu T, Enders D. Synthesis 2016; 48: 238
- 48 Jin Q, Zhang J, Jiang C, Zhang D, Gao M, Hu S. J. Org. Chem. 2018; 83: 8410
- 49 Meng Z, Yang WR, Zheng J. Tetrahedron Lett. 2019; 60: 1758
- 50 Zheng Y.-S, Tu L, Gao L.-M, Huang R, Feng T, Sun H, Wang W.-X, Li Z.-H, Liu J.-K. Org. Biomol. Chem. 2018; 16: 2639
- 51 Zhang X, Pan Y, Liang P, Pang L, Ma X, Jiao W, Shao H. Adv. Synth. Catal. 2018; 360: 3015
- 52 Long W, Chen S, Zhang X, Fang L, Wang Z. Tetrahedron 2018; 74: 6155
- 53 Guo Z, Jia H, Liu H, Wang Q, Huang J, Guo H. Org. Lett. 2018; 20: 2939
Pyrolysis methods:
Photolysis methods:
Brønsted acid methods: