Synlett 2021; 32(20): 2013-2035
DOI: 10.1055/a-1536-4673
account

Absolute Asymmetric Catalysis, from Concept to Experiment: A Narrative

Joaquim Crusats
a   Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, University of Barcelona, Faculty of Chemistry, C. de Martí i Franquès 1-11, 08028 Barcelona, Catalonia, Spain
b   Institute of Cosmos Science (IEE-ICC), Universitat de Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Catalonia, Spain
,
Albert Moyano
a   Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, University of Barcelona, Faculty of Chemistry, C. de Martí i Franquès 1-11, 08028 Barcelona, Catalonia, Spain
› Author Affiliations
This work has been supported over the years by several grants from the Spanish Ministry of Science and Innovation (Secretaría de Estado de Investigación, Desarrollo e Innovación; AYA2009-13920-C02-02, CTQ2013-47401-C2-1-P, CTQ2017-87864-C2-1-P).


We dedicate this paper to Prof. Josep Mª Ribó, the ‘onlie begetter’ of our interest in symmetry breaking and the emergence of molecular chirality.

Abstract

The generally accepted hypothesis to explain the origin of biological homochirality (that is to say, the fact that proteinogenic amino acids are left-handed, and carbohydrates right-handed, in all living beings) is to assume, in the course of prebiotic chemical evolution, the appearance of an initial enantiomeric excess in a set of chiral molecular entities by spontaneous mirror-symmetry breaking (SMSB), together with suitable amplification and replication mechanisms that overcome the thermodynamic drive to racemization. However, the achievement of SMSB in chemical reactions taking place in solution requires highly specific reaction networks showing nonlinear dynamics based on enantioselective autocatalysis, and examples of its experimental realization are very rare. On the other hand, emergence of net supramolecular chirality by SMSB in the self-assembly of achiral molecules has been seen to occur in several instances, and the chirality sign of the resulting supramolecular system can be controlled by the action of macroscopic chiral forces. These considerations led us to propose a new mechanism for the generation of net chirality in molecular systems, in which the SMSB takes place in the formation of chiral supramolecular dissipative structures from achiral monomers, leading to asymmetric imbalances in their composition that are subsequently transferred to a standard enantioselective catalytic reaction, dodging in this way the highly limiting requirement of finding suitable reactions in solution that show enantio­selective autocatalysis. We propose the name ‘absolute asymmetric catalysis’ for this approach, in which an achiral monomer is converted into a nonracemic chiral aggregate that is generated with SMSB and that is catalytically active.

Our aim in this Account is to present a step-by-step narrative of the conceptual and experimental development of this hitherto unregarded, but prebiotically plausible, mechanism for the emergence of net chirality in molecular reactions.

1 Introduction: The Origin of Biological Homochirality and Spontaneous Mirror-Symmetry Breaking

2 Experimental Chemical Models for Spontaneous Mirror-Symmetry Breaking: The Soai Reaction and Beyond

3 Spontaneous Mirror-Symmetry Breaking in Supramolecular Chemistry: Plenty of Room at the Top

4 Absolute Asymmetric Catalysis: An Alternative Mechanism for the Emergence of Net Chirality in Molecular Systems

5 Experimental Realization of Top-Down Chirality Transfer to the

Molecular Level

6 Conclusions and Outlook



Publication History

Received: 08 June 2021

Accepted after revision: 24 June 2021

Accepted Manuscript online:
24 June 2021

Article published online:
02 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 2 Avetisov V, Goldanskii V. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 11435
  • 3 Rosenberg RA. Symmetry 2019; 11: 528
    • 4a Elias WE. J. Chem. Educ. 1972; 49: 448
    • 4b Mason SF. Nature 1984; 311: 19
    • 4c Bonner WA. Origins Life Evol. Biospheres 1991; 21: 59
    • 4d Luisi PL. The Emergence of Life: From Chemical Origins to Theories and Perspectives of This Unsolved Problem. RSC Publishing; Cambridge: 2006
    • 4e Guijarro A, Yus M. The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current. RSC Publishing; Cambridge: 2009
    • 4f Ávalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC. Tetrahedron: Asymmetry 2010; 21: 1030
    • 4g Blackmond DG. Cold Spring Harbor Perspect. Biol. 2010; 2 a002147
    • 4h Flügel RM. Chirality and Life: A Short Introduction to the Early Phases of Chemical Evolution. Springer Verlag; Berlin–Heidelberg: 2011
    • 4i Mauksch M., Tsogoeva S.; In Biomimetic Organic Synthesis; Poupon E., Nay B.; Wiley-VCH: Weinheim, 2011;
    • 4j Mann S. Angew. Chem. Int. Ed. 2013; 52: 155
    • 4k Cintas P. Biochirality: Origins, Evolution, and Molecular Recognition. In Topics in Current Chemistry. Springer Verlag; Berlin–Heidelberg: 2013
  • 5 Ribó JM, Hochberg D, Crusats J, El-Hachemi Z, Moyano A. J. R. Soc., Interface 2017; 14: 20170699
  • 6 Feringa BL, van Delden RA. Angew. Chem. Int. Ed. 1999; 38: 3418
  • 7 Ávalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC, Barron LD. Chem. Rev. 1998; 98: 2391
    • 8a Meierhenrich UJ, Thiemann WH. P. Origins Life Evol. Biospheres 2004; 34: 111
    • 8b Meinert C, de Marcellus P, Le Sergeant dHendecourt L, Nahon L, Jones NC, Hoffmann SV, Bredehöft JH, Meierhenrich UJ. Phys. Life Rev. 2011; 8: 307
    • 8c Myrgorodska I, Meinert C, Martins Z, Le Sergeant d’Hendecourt L, Meierhenrich UJ. Angew. Chem. Int. Ed. 2015; 54: 1402
    • 9a Dreiling JM, Gay TJ. Phys. Rev. Lett. 2014; 113: 118103
    • 9b Rosenberg RA, Mishra D, Naaman R. Angew. Chem. Int. Ed. 2015; 54: 7295
  • 10 Frank FC. Biochim. Biophys. Acta 1953; 11: 459
  • 11 Soai K, Shibata T, Morioka H, Choji K. Nature 1995; 378: 767
  • 13 For a review, see: Ribó JM, Blanco C, Crusats J, El-Hachemi Z, Hochberg D, Moyano A. Chem. Eur. J. 2014; 20: 17250
    • 14a Kondepudi DK, Nelson GW. Phys. A (Amsterdam, Neth.) 1984; 125: 465
    • 14b Kondepudi DK, Nelson GW. Nature 1985; 314: 438
    • 15a Kondepudi DK, Prigogine I. Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd ed. J. Wiley & Sons; Chichester: 2015
    • 15b Kondepudi DK. Introduction to Modern Thermodynamics . J. Wiley & Sons; Chichester: 2008
  • 16 Kondepudi DK, Kapcha L. Chirality 2008; 20: 524
  • 17 Ribó JM, Hochberg D. Phys. Chem. Chem. Phys. 2020; 22: 14013
    • 18a Glansdorf P, Prigogine I. Physica 1964; 30: 351
    • 18b Glansdorf P, Prigogine I. Thermodynamic Theory of Structure, Stability and Fluctuations . Wiley-Interscience; London: 1964
    • 18c Hochberg D, Ribó JM. Phys. Rev. Res. 2020; 2: 043367
  • 19 Blackmond DG. Angew. Chem. Int. Ed. 2009; 48: 2648
  • 20 Plasson R, Kondepudi DK, Bersini H, Commeyras A, Asakura K. Chirality 2007; 19: 589
  • 21 Blanco C, Ribó JM, Crusats J, El-Hachemi Z, Moyano A, Hochberg D. Phys. Chem. Chem. Phys. 2013; 15: 1546
  • 22 Eigen M, Schuster P. The Hypercycle: A Principle of Natural Self-Organization. Springer; Berlin: 1979
  • 23 Ribó JM, Crusats J, El-Hachemi Z, Moyano A, Hochberg D. Chem. Sci. 2017; 8: 763
  • 24 Ribó JM, Hochberg D. Phys. Lett. A 2008; 373: 111
  • 25 Crusats J, Hochberg D, Moyano A, Ribó JM. ChemPhysChem 2009; 10: 2123
  • 26 Athavale SV, Simon A, Houk KN, Denmark SE. J. Am. Chem. Soc. 2020; 142: 18387
    • 27a Shibata T, Yonekubo K, Soai K. Angew. Chem. Int. Ed. 1999; 38: 659
    • 27b Sato I, Urabe H, Ishiguro T, Shibata T, Soai K. Angew. Chem. Int. Ed. 2003; 42: 315
    • 28a Soai K, Shibata T, Sato I. Acc. Chem. Res. 2000; 33: 382
    • 28b Soai K, Kawasaki T. Chirality 2006; 18: 468
    • 28c Soai K, Kawasaki T. Top. Curr. Chem. 2008; 284: 1
    • 28d Soai K, Kawasaki T, Matsumoto A. Acc. Chem. Res. 2014; 47: 3643
    • 28e Soai K., Matsumoto A., Kawasaki T.; In Advances in Asymmetric Autocatalysis and Related Topics; Pályi G., Kurdi R., Zucchi C.; Academic Press: London, 2017; 1–30
    • 28f Soai K, Kawasaki T, Matsumoto A. Tetrahedron 2018; 74: 1973
    • 28g Soai K. Proc. Jpn. Acad., Ser. B 2019; 95: 89
    • 28h Gehring T, Busch M, Schlageter M, Weingand D. Chirality 2010; 22: E173
  • 29 Soai K., Shibata T., Kowata Y.; Japan Kokai Tokkyo Koho JP 9-268179, 1997
  • 30 Soai K, Sato I, Shibata T, Komiya S, Hayashi M, Matsueda Y, Imamura H, Hayase T, Morioka H, Tabira H, Yamamoto J, Kowata Y. Tetrahedron: Asymmetry 2003; 14: 185
  • 31 Singleton DA, Vo LK. J. Am. Chem. Soc. 2002; 124: 10010
  • 32 Singleton DS, Vo LK. Org. Lett. 2003; 5: 4337
  • 33 Kaimori Y, Hiyoshi Y, Kawasaki T, Matsumoto A, Soai K. Chem. Commun. 2019; 55: 5223
    • 34a Rivera Islas J, Lavabre D, Grevy J.-M, Hernández Lamoneda R, Rojas Cabrera H, Micheau J.-C, Buhse T. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 13473
    • 34b Lavabre D, Micheau J.-C, Rivera Islas J, Buhse T. J. Phys. Chem. A 2007; 111: 281
    • 34c Lavabre D, Micheau J.-C, Rivera Islas J, Buhse T. Top. Curr. Chem. 2008; 284: 67
    • 36a Gridnev ID, Brown JM. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5727
    • 36b Klanlermayer J, Gridnev ID, Brown JM. Chem. Commun. 2007; 3151
    • 36c Gridnev ID, Voriobiev AK. ACS Catal. 2012; 2: 2137
    • 36d Matsumoto A, Abe T, Hara A, Tobita T, Sasagawa T, Kawasaki T, Soai K. Angew. Chem. Int. Ed. 2015; 54: 15218
  • 37 Noble-Terán ME, Cruz J.-M, Micheau J.-C, Buhse T. ChemCatChem 2018; 10: 642
    • 38a Schiaffino L, Ercolani G. Angew. Chem. Int. Ed. 2008; 47: 6832
    • 38b Schiaffino L, Ercolani G. Chem. Eur. J. 2010; 16: 3147
    • 38c Ercolani G, Schiaffino L. J. Org. Chem. 2011; 76: 2619
  • 39 Weissbuch I, Leiserowitz L, Lahav M. Top. Curr. Chem. 2005; 259: 123
  • 40 Mauksch M, Tsogoeva SB, Martynova IM, Wei S. Angew. Chem. Int. Ed. 2007; 46: 393
  • 41 Amedjkouh M, Brandberg M. Chem. Commun. 2008; 3043
  • 42 Wang X, Zhang Y, Tan H, Wang Y, Han P, Wang DZ. J. Org. Chem. 2010; 75: 2403
  • 43 Mauksch M, Tsogoeva SB, Wei S, Martynova IM. Chirality 2007; 19: 816
  • 44 Held FE, Fingerhut A, Tsogoeva SB. Tetrahedron: Asymmetry 2012; 23: 1663
  • 45 Blackmond DG. Angew. Chem. Int. Ed. 2005; 44: 4302
  • 46 Valero G, Moyano A. In Advances in Asymmetric Autocatalysis and Related Topics Kurdi R., Zucchi C.; Academic Press, London 2017; 241-258
  • 47 Valero G, León CM, Moyano A. Asymmetric Catal. 2015; 2: 7
  • 48 Blackmond DG. Chirality 2009; 21: 359
  • 49 Mauksch M, Wei S, Freund M, Zamfir A, Tsogoeva SB. Origins Life Evol. Biospheres 2010; 40: 79
  • 50 Valero G, Ribó JM, Moyano A. Chem. Eur. J. 2014; 20: 17395
  • 51 Romero-Fernández MP, Babiano R, Cintas P. Chirality 2018; 30: 445
  • 53 Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796

    • For reviews, see:
    • 54a Pérez-García L, Amabilino D. Chem. Soc. Rev. 2007; 36: 363
    • 54b Liu M, Zhang L, Wang T. Chem. Rev. 2015; 115: 7304
    • 54c Buhse T, Cruz J.-M, Noble-Terán M, Hochberg D, Ribó JM, Crusats J, Micheau J.-C. Chem. Rev. 2021; 121: 2147
  • 55 El-Hachemi Z, Crusats J, Troyano C, Ribó JM. ACS Omega 2019; 4: 4804
  • 56 Tschierke C, Dressel C. Symmetry 2020; 12: 1098
  • 57 Young WR, Aviram A, Cox RJ. J. Am. Chem. Soc. 1972; 94: 3976
  • 58 Tschierske C, Ungar G. ChemPhysChem 2016; 17: 9
    • 59a Sang Y, Liu M. Symmetry 2019; 11: 950
    • 59b Karunakaran SC, Cafferty BJ, Weigert-Muñoz A, Schuster GB, Hud NV. Angew. Chem. Int. Ed. 2019; 58: 1453
  • 60 Petit-Garrido N, Claret J, Ignés-Mullol J, Sagués F. Nat. Commun. 2012; 3: 1001
  • 61 Chen P, Ma X, Hu K, Rong Y, Liu M. Chem. Eur. J. 2011; 17: 12108
  • 62 Ribó JM, Crusats J, Sagués F, Claret J, Rubires R. Science 2001; 292: 2063
  • 63 Yamaguchi T, Kimura T, Matsuda H, Aida T. Angew. Chem. Int. Ed. 2004; 43: 6350
  • 64 Sun J, Li Y, Yan F, Liu C, Sang Y, Tian F, Feng Q, Duan P, Zhang L, Shi X, Ding B, Liu M. Nat. Commun. 2018; 9: 2599
  • 65 Cölfen H, Antonietti M. Mesocrystals and Nonclassical Crystallization 2008
    • 66a Ostwald W. Z. Phys. Chem. 1897; 22: 289
    • 66b Voorhees PW. J. Stat. Phys. 1985; 38: 231
    • 66c Ratke L, Voorhees PW. Growth and Coarsening: Ostwald Ripening in Material Processing 2002
  • 67 Perez M. Scr. Mater. 2005; 52: 709
  • 68 Kondepudi DK, Kaufman RJ, Singh N. Science 1990; 250: 975
  • 69 Viedma C. Phys. Rev. Lett. 2005; 94: 065504
  • 70 For a review on J-aggregates, see: Würthner F, Kaiser TE, Saha-Möller CR. Angew. Chem. Int. Ed. 2011; 50: 3376
  • 71 Ohno O, Kaizu Y, Kobayashi H. J. Chem. Phys. 1993; 99: 4128
    • 72a Pasternack RF, Giannetto A, Pagano P, Gibbs EJ. J. Am. Chem. Soc. 1991; 113: 7799
    • 72b Pasternack RF. Chirality 2003; 15: 329
    • 72c Bellacchio E, Lauceri R, Gurrieri S, Monsù ScolaroL, Romeo A, Purrello R. J. Am. Chem. Soc. 1998; 120: 12353
    • 72d Lauceri R, Raudino A, Monsù ScolaroL, Micali N, Purrello R. J. Am. Chem. Soc. 2002; 124: 894
    • 73a Rubires R, Crusats J, El-Hachemi Z, Jaramillo T, Valls E, Farrera JA, Ribó JM. New J. Chem. 1999; 189
    • 73b Rubires R, Farrera JA, Ribó JM. Chem. Eur. J. 2001; 7: 436
  • 74 The same phenomenon also happens in the aggregation of charged dye molecules, see: De Rossi U, Dähne S, Meskers SC. J, Dekkers HP. J. M. Angew. Chem., Int. Ed. Engl. 1996; 35: 760
  • 75 Romeo A, Castriciano MA, Occhiuto I, Zagami R, Pasternack RF, Monsù Scolaro L. J. Am. Chem. Soc. 2014; 136: 40
  • 76 El-Hachemi Z, Escudero C, Acosta-Reyes F, Casas MT, Altoe V, Aloni S, Oncins G, Sorrenti A, Crusats J, Campos JL, Ribó JM. J. Mater. Chem. C 2013; 1: 3337
    • 77a Blanco C, Hochberg D. Phys. Chem. Chem. Phys. 2011; 13: 839
    • 77b See also: Blanco C, Hochberg D. Phys. Chem. Chem. Phys. 2012; 14: 2301
  • 78 Kondepudi DK, Asakura K. Acc. Chem. Res. 2001; 34: 946
  • 79 Matsumoto A, Ozaki H, Harada S, Tada K, Ayugase T, Ozawa H, Kawasaki T, Soai K. Angew. Chem. Int. Ed. 2016; 55: 15246
  • 80 Matsumoto A, Yonemitsu K, Ozaki H, Mísek J, Stary I, Stará IG, Soai K. Org. Biomol. Chem. 2017; 15: 1321
  • 81 Hitosugi S, Matsumoto A, Kaimori Y, Iizuka R, Soai K, Isobe H. Org. Lett. 2014; 16: 645
  • 82 Kawasaki T, Araki Y, Hatase K, Suzuki K, Matsumoto A, Yokoi T, Kubota Y, Tatsumi T, Soai K. Chem. Commun. 2015; 51: 8742
  • 83 Matsumoto A, Ide T, Kaimori Y, Fujiwara S, Soai K. Chem. Lett. 2015; 44: 688
  • 84 Matsumoto A, Kaimori Y, Uchida M, Omori H, Kawasaki T, Soai K. Angew. Chem. Int. Ed. 2017; 56: 545
  • 85 Hawbaker NA, Blackmond DG. Nat. Chem. 2019; 11: 957
    • 86a Quack M. Angew. Chem. Int. Ed. 2002; 41: 4618
    • 86b Berger R. In Theoretical and Computational Chemistry, Vol. 14 2004; 188-288
    • 86c Figgen D, Koers A, Schwerdtfeger P. Angew. Chem. Int. Ed. 2010; 49: 2941
  • 87 For a review, see: Feringa BL, van Delden RA. Angew. Chem. Int. Ed. 1999; 38: 3418
  • 88 Vandenbussche S, Reisse J, Bartik K, Lievin J. Chirality 2011; 23: 367

    • For reviews on flow effects in supramolecular chirality, see:
    • 89a Crusats J, El-Hachemi Z, Ribó JM. Chem. Soc. Rev. 2010; 39: 569
    • 89b Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Llorens J, Sorrenti A, Ribó JM. Isr. J. Chem. 2011; 51: 1007
    • 89c Ribó JM, El-Hachemi Z, Crusats J. Rend. Phys. Accad. Lincei 2013; 24: 197
  • 90 Escudero C, Crusats J, Díez-Pérez I, El-Hachemi Z, Ribó JM. Angew. Chem. Int. Ed. 2006; 45: 8032
  • 91 El-Hachemi Z, Escudero C, Arteaga O, Canillas A, Crusats J, Mancini G, Purrello R, Sorrenti A, D’Urso A, Ribó JM. Chirality 2009; 21: 408
  • 92 Sorrenti A, Rodriguez-Trujillo R, Amabilino DB, Puigmartí-Luis J. J. Am. Chem. Soc. 2016; 138: 6920
    • 93a Rong Y, Chen P, Liu M. Chem. Commun. 2013; 49: 10498
    • 93b Rananaware A, Duc La D, Al Kobaisi M, Boshale RS, Boshale SV, Boshale SV. Chem. Commun. 2016; 52: 10253
  • 94 Globus N, Blandford RD. Astrophys. J., Lett. 2020; 895: L11
  • 95 Kumar A, Capua E, Kesharwani MK, Martin JM. L, Sitbon E, Waldeck EH, Naaman R. Proc. Natl. Acad. Sci. U.S.A. 2017; 114: 2474
    • 96a For a review on supramolecular chiral catalysis, see ref. 54b, Section 6.3. See also:
    • 96b Yutthalekha T, Wattakanit C, Lapeyre V, Nokbin S, Warakulwit C, Limtrakul J, Kuhn A. Nat. Commun. 2016; 7: 12678
    • 96c Li Y, Bouteiller L, Raynal M. ChemCatChem 2019; 11: 5212
    • 96d Li Y, Hammoud A, Bouteiller L, Raynal M. J. Am. Chem. Soc. 2020; 142: 5676
    • 97a Baross JA, Hoffman SE. Origins Life Evol. Biospheres 1985; 15: 327
    • 97b Martin W, Baross J, Kelley D, Russell MJ. Nat. Rev. Microbiol. 2008; 6: 805
  • 98 Ginster U, Mottl MJ, Herzen RP. V. J. Geophys. Res.: Solid Earth 1994; 99: 4937
    • 99a Jonkheim P, van der Schoot P, Schenning A, Meijer EW. Science 2006; 313: 80
    • 99b Kreysing M, Keil L, Lanzmich S, Braun D. Nat. Chem. 2015; 7: 203
  • 100 Szostak JW, Bartel DP, Luisi PL. Nature 2001; 409: 387
  • 101 For a review on transmission of chirality across length scales, see: Morrow S. M., Bissette A. J., Fletcher S. P.; Nat. Nanotechnol.; 2017, 12: 410
  • 102 For a review, see: Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
  • 103 Hayashi Y, Samanta S, Gotoh H, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 6634
    • 104a Rideout D, Breslow R. J. Am. Chem. Soc. 1980; 102: 7816
    • 104b Breslow R. Acc. Chem. Res. 1991; 24: 159
  • 105 Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
  • 106 These results were first disclosed in the ‘Félix Serratosa Medal Lecture’, at the XXVII Biennal Meeting in Organic Chemistry, 20 June 2018, Santiago de Compostela, Spain.
  • 107 Arlegui A, Soler B, Galindo A, Arteaga O, Canillas A, Ribó JM, El-Hachemi Z, Crusats J, Moyano A. Chem. Commun. 2019; 55: 12219
  • 108 Arlegui A, El-Hachemi Z, Crusats J, Moyano A. Molecules 2018; 23: 3363
  • 109 Arlegui A. Ph.D. Thesis . University of Barcelona; Spain: 2019
    • 110a Shen Z, Wang T, Liu M. Angew. Chem. Int. Ed. 2014; 53: 13424
    • 110b Shen Z, Wang T, Shi L, Tang Z, Liu M. Chem. Sci. 2015; 6: 4267
  • 111 Roelfes G, Feringa BL. Angew. Chem. Int. Ed. 2005; 44: 3230
  • 112 Shen Z, Sang Y, Wang T, Jiang J, Meng Y, Jiang Y, Okuro K, Aida T, Liu M. Nat. Commun. 2019; 10: 3976
  • 113 Nagata Y, Takeda R, Suginome M. ACS Cent. Sci. 2019; 5: 1235
  • 114 For a commentary, see: Denmark SE. ACS Cent. Sci. 2019; 5: 1117