Synthesis 2021; 53(24): 4559-4566
DOI: 10.1055/a-1560-5245
short review

Transition-Metal-Catalyzed Enantioselective α-Arylation of Carbonyl Compounds to Give Tertiary Stereocenters

,
,
The Department of Chemical Sciences of the University of Padova is thankfully acknowledged for a grant (P-DiSC#08BIRD2019) and for a post-doctoral fellowship (E.-C.M.).


Abstract

Enantioenriched α-aryl carbonyl compounds are ubiquitous in natural products and biologically active compounds. Their synthesis has been explored over the last few decades and several methods now exist that allow for the enantioselective formation of a C(sp3)-C(sp2) bond in the α-position to a carbonyl group. However, although the formation of quaternary stereocenters has been fairly well established, the enantioselective formation of tertiary stereocenters proved more challenging due to facile product post-reaction racemization. In this short review, we summarize the methods reported to date for the asymmetric α-arylation of enolates and analogues that rely on transition-metal catalysis.

1 Introduction

2 Nucleophile Pre-activation

3 Activation via Aminocatalysis

4 Formation of Constrained Stereocenters

5 Concluding Remarks



Publication History

Received: 14 July 2021

Accepted after revision: 28 July 2021

Accepted Manuscript online:
28 July 2021

Article published online:
01 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Harrington PJ, Lodewijk E. Org. Process Res. Dev. 1997; 1: 72
    • 2a Åhman J, Wolfe JP, Troutman MV, Palucki M, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 1918
    • 2b Spielvogel DJ, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 3500
    • 2c Xie X, Chen Y, Ma D. J. Am. Chem. Soc. 2006; 128: 16050
    • 2d Kündig EP, Seidel TM, Jia Y. x, Bernardinelli G. Angew. Chem. Int. Ed. 2007; 46: 8484
    • 2e García-Fortanet J, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 8108
    • 2f Liao X, Weng Z, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 195
    • 2g Taylor AM, Altman RA, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 9900
    • 2h Würtz S, Lohre C, Fröhlich R, Bergander K, Glorius F. J. Am. Chem. Soc. 2009; 131: 8344
    • 2i Ge S, Hartwig JF. J. Am. Chem. Soc. 2011; 133: 16330
    • 4a Dai X, Strotman NA, Fu GC. J. Am. Chem. Soc. 2008; 130: 3302
    • 4b Lou S, Fu GC. J. Am. Chem. Soc. 2010; 132: 1264
    • 4c Lundin PM, Esquivias J, Fu GC. Angew. Chem. Int. Ed. 2009; 48: 154
    • 4d Lundin PM, Fu GC. J. Am. Chem. Soc. 2010; 132: 11027
    • 4e Jensen KL, Franke PT, Nielsen LT, Daasbjerg K, Jorgensen KA. Angew. Chem. Int. Ed. 2010; 49: 129
    • 4f Doran R, Guiry PJ. J. Org. Chem. 2014; 79: 9112
    • 4g Mao J, Liu F, Wang M, Wu L, Zheng B, Liu S, Zhong J, Bian Q, Walsh PJ. J. Am. Chem. Soc. 2014; 136: 17662
    • 4h Jin M, Adak L, Nakamura M. J. Am. Chem. Soc. 2015; 137: 7128
    • 4i Liu F, Zhong J, Zhou Y, Gao Z, Walsh PJ, Wang X, Ma S, Hou S, Liu S, Wang M, Wang M, Bian Q. Chem. Eur. J. 2018; 24: 2059
    • 4j Iwamoto T, Okuzono C, Adak L, Jin M, Nakamura M. Chem. Commun. 2019; 55: 1128
    • 4k Li B, Li T, Aliyu MA, Li ZH, Tang W. Angew. Chem. Int. Ed. 2019; 58: 11355
    • 4l Li J, Berger M, Zawodny W, Simaan M, Maulide N. Chem 2019; 5: 1883
    • 4m DeLano TJ, Dibrell SE, Lacker CR, Pancoast AR, Poremba KE, Cleary L, Sigman MS, Reisman SE. Chem. Sci. 2021; 12: 7758
    • 4n Zhang Q, Liang K, Guo C. CCS Chem. 2021; 338
    • 4o Watkins AL, Hashiguchi BG, Landis CR. Org. Lett. 2008; 10: 4553
    • 4p Gandolfo E, Tang X, Roy SR, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 16854
    • 5a Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 5816
    • 5b Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234
    • 5c Culkin DA, Hartwig JF. Organometallics 2004; 23: 3398
    • 5d Orlandi M, Licini G. J. Org. Chem. 2020; 85: 11511
    • 6a Bordwell F. Acc. Chem. Res. 1988; 21: 456
    • 6b Bordwell F, Harrelson J. Can. J. Chem. 1990; 68: 1714
  • 7 Liu X, Hartwig JF. J. Am. Chem. Soc. 2004; 126: 5182
    • 8a Huang Z, Liu Z, Zhou J. J. Am. Chem. Soc. 2011; 133: 15882
    • 8b Yang J, Zhou J. Org. Chem. Front. 2014; 1: 365
  • 9 Huang Z, Lim LH, Chen Z, Li Y, Zhou F, Su H, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 4906
  • 10 Kobayashi K, Yamamoto Y, Miyaura N. Organometallics 2011; 30: 6323
  • 11 Huang Z, Chen Z, Lim LH, Quang GC. P, Hirao H, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 5807
    • 12a Bigot A, Williamson AE, Gaunt MJ. J. Am. Chem. Soc. 2011; 133: 13778
    • 12b Harvey JS, Simonovich SP, Jamison CR, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 13782
  • 13 Rousseaux S, Vrancken E, Campagne JM. Angew. Chem. Int. Ed. 2012; 51: 10934
  • 15 Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H. J. Am. Chem. Soc. 2001; 123: 9500
    • 16a Horibe T, Nakagawa K, Hazeyama T, Takeda K, Ishihara K. Chem. Commun. 2019; 55: 13677
    • 16b Horibe T, Sakakibara M, Hiramatsu R, Takeda K, Ishihara K. Angew. Chem. Int. Ed. 2020; 59: 16470
    • 16c Matsukawa S, Sugama H, Imamoto T. Tetrahedron Lett. 2000; 41: 6461
    • 16d Bai Z, Zhang H, Wang H, Yu H, Chen G, He G. J. Am. Chem. Soc. 2020; 143: 1195
    • 17a Harper KC, Sigman MS. J. Org. Chem. 2013; 78: 2813
    • 17b Harper KC, Sigman MS. Science 2011; 333: 1875
    • 17c Santiago CB, Guo J.-Y, Sigman MS. Chem. Sci. 2018; 9: 2398
    • 17d Sigman MS, Harper KC, Bess EN, Milo A. Acc. Chem. Res. 2016; 49: 1292
    • 17e Orlandi M, Coelho JA. S, Hilton MJ, Toste FD, Sigman MS. J. Am. Chem. Soc. 2017; 139: 6803
    • 17f Orlandi M, Toste FD, Sigman MS. Angew. Chem. Int. Ed. 2017; 56: 14080
  • 18 Afewerki S, Córdova A. Chem. Rev. 2016; 116: 13512
  • 19 Allen AE, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 4260
  • 20 Liu RR, Li BL, Lu J, Shen C, Gao JR, Jia YX. J. Am. Chem. Soc. 2016; 138: 5198
  • 21 Zhu C, Wang D, Zhao Y, Sun WY, Shi Z. J. Am. Chem. Soc. 2017; 139: 16486
  • 22 Liu W.-B, Cai J, Wei Q, Hu X.-D, Zhang Y, Li W, Cong H, Liu W. Synthesis 2018; 50: 1661
  • 23 Wang M, Chen J, Chen Z, Zhong C, Lu P. Angew. Chem. Int. Ed. 2018; 57: 2707
  • 24 Huang X, Oh W, Zhou JS. Angew. Chem. Int. Ed. 2018; 57: 7673