Synthesis 2022; 54(01): 161-170
DOI: 10.1055/a-1581-2408
paper

p-Toluenesulfonic Acid-Catalyzed Reaction of Phthalaldehydic Acids with Difluoroenoxysilanes: Access to 3-Difluoroalkyl Phthalides

Saimei Liu
a   Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
,
Yan Li
a   Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
,
Feiyi Wang
a   Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
,
Chao Ma
a   Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
,
Guichun Yang
a   Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
,
Jianguo Yang
a   Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
b   Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
,
Jun Ren
a   Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (NSFC. 21676075).


Abstract

A convenient approach for the synthesis of 3-difluoroalkyl phthalides has been developed from phthalaldehydic acids and difluoroenoxysilanes by using relatively inexpensive p-toluenesulfonic acid monohydrate (PTSA) as a catalyst. A series of 3-difluoroalkyl phthalides and cyclic difluoroalkyl ethers were obtained in up to 99% yield. The products obtained could be readily converted into difluoroalkyl phthalide derivatives by simple modifications.

Supporting Information



Publication History

Received: 17 June 2021

Accepted after revision: 09 August 2021

Accepted Manuscript online:
09 August 2021

Article published online:
09 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Lin G, Chan SS.-K, Chung H.-S, Li S.-L. Stud. Nat. Prod. Chem. 2005; 32: 611
    • 1b Beck JJ, Chou S.-C. J. Nat. Prod. 2007; 70: 891
    • 1c Teixeira RR, Bressan GC, Pereira WL, Ferreira JG, De Oliveira FM, Thomaz DC. Molecules 2013; 18: 1881
    • 1d Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213
    • 2a Marco-Contelles J, Zhang Y. J. Med. Chem. 2020; 63: 12485
    • 2b Yoganathan K, Rossant C, Ng S, Huang Y, Butler MS, Buss AD. J. Nat. Prod. 2003; 66: 1116
    • 2c Othman DI. A, Otsuka K, Takahashi S, Selim KB, El-Sayed MA, Tantawy AS, Okauchi T, Kitamura M. Synlett 2018; 29: 457
    • 2d Gentry EJ, Jampani HB, Keshavarz-Shokri A, Morton MD, Vander VeldeD, Telikepalli H, Mitscher LA, Shawar R, Humble D, Baker W. J. Nat. Prod. 1998; 61: 1187

      For selected recent examples, see:
    • 3a Yuan S, Zhang DQ, Zhang JY, Yu B, LiuH M. Org. Lett. 2020; 22: 814
    • 3b Liang X, Xiong MT, Zhu HP, Shi KQ, Zhou YF, Pan YJ. Org. Lett. 2020; 22: 9568
    • 3c Chen WK, Li J, Xie H, Wang J. Org. Lett. 2020; 22: 3586
    • 3d Iwasaki M, Kazao Y, Ishida T, Nishihara Y. Org. Lett. 2020; 22: 7343
    • 3e Pan Y.-L, Zheng H.-L, Wang J, Yang C, Li X, Cheng J.-P. ACS Catal. 2020; 10: 8069
    • 3f Liu Y, Majhi PK, Song R, Mou C, Hao L, Chai H, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2020; 59: 3859
    • 5a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 5b Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 5c Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
    • 6a Ni C, Zhu L, Hu J. Huaxue Xuebao 2015; 73: 90
    • 6b Feng Z, Xiao Y.-L, Zhang X. Acc. Chem. Res. 2018; 51: 2264
    • 6c Dong D.-Q, Yang H, Shi J.-L, Si W.-J, Wang Z.-L, Xu X.-M. Org. Chem. Front. 2020; 7: 2538
    • 7a Sha W, Zhang W, Ni S, Mei H, Han J, Pan Y. J. Org. Chem. 2017; 82: 9824
    • 7b Da Y, Han S, Du X, Liu S, Liu L, Li J. Org. Lett. 2018; 20: 5149
    • 7c Yuan F, Zhou S, Yang Y, Guo M, Tang X, Wang G. Org. Chem. Front. 2018; 5: 3306
    • 7d Yang Q, Lin Q, Xing H, Zhao Z. Org. Chem. Front. 2019; 6: 3939
  • 8 Inaba M, Sakai T, Shinada S, Sugiishi T, Nishina Y, Shibata N, Amii H. Beilstein J. Org. Chem. 2018; 14: 182

    • For reviews on difluoroenoxysilanes see:
    • 9a Decostanzi M, Campagne J.-M, Leclerc E. Org. Biomol. Chem. 2015; 13: 7351
    • 9b Hu X.-S, Yu J.-S, Zhou J. Chem. Commun. 2019; 55: 13638

    • For selected recent examples, see:
    • 9c Li J.-S, Liu Y.-J, Zhang G.-W, Ma J.-A. Org. Lett. 2017; 19: 6364
    • 9d Gao X, Cheng R, Xiao Y.-L, Wan X.-L, Zhang X. Chem 2019; 5: 2987
    • 9e Li J, Chen Y, Zhong R, Zhang Y, Yang J, Ding H, Wang Z. Org. Lett. 2020; 22: 1164
    • 9f Hao Y.-J, Gong Y, Zhou Y, Zhou J, Yu J.-S. Org. Lett. 2020; 22: 8516
    • 9g Rong M.-Y, Li J.-S, Zhou Y, Zhang F.-G, Ma J.-A. Org. Lett. 2020; 22: 9010
    • 9h Huang X, Zhang Y.-G, Liang W.-J, Zhang Q.-F, Zhan Y.-L, Kong L.-C, Peng B. Chem. Sci. 2020; 11: 3048
    • 9i Li J, Xi W, Zhong R, Yang J, Wang L, Ding H, Wang Z. Chem. Commun. 2021; 57: 1050

      For examples of the reaction of difluoroenoxysilanes with aldehydes, see:
    • 10a Chorki F, Grellepois F, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J.-P. J. Org. Chem. 2001; 66: 7858
    • 10b Yu J.-S, Liu Y.-L, Tang J, Wang X, Zhou J. Angew. Chem. Int. Ed. 2014; 53: 9512
    • 10c Wu Y.-B, Wan L, Lu G.-P, Cai C. Eur. J. Org. Chem. 2017; 3438
    • 10d Chen T, Cai C. New J. Chem. 2017; 41: 2519

      For selected examples on the synthesis of fluoroalkyl ethers, see:
    • 11a Fu M.-L, Liu J.-B, Xu X.-H, Qing F.-L. J. Org. Chem. 2017; 82: 3702
    • 11b Tian Y.-P, Gong Y, Hu X.-S, Yu J.-S, Zhou Y, Zhou J. Org. Biomol. Chem. 2019; 17: 9430
    • 12a Wheeler DD, Young DC, Erley DS. J. Org. Chem. 1957; 22: 547
    • 12b da Silva Maia AF, Siqueira RP, de Oliveira FM, Ferreira JG, da Silva SF, Caiuby CA. D, de Oliveira LL, de Paula SO, Souza RA. C, Guilardi S, Bressan GC, Teixeira RR. Bioorg. Med. Chem. Lett. 2016; 26: 2810
    • 13a Zhang H, Zhang S, Liu L, Luo G, Duan W, Wang W. J. Org. Chem. 2010; 75: 368
    • 13b Jia L, Han F. Beilstein J. Org. Chem. 2017; 13: 1425
    • 14a Liu C, Kudo K, Hashimoto Y, Saigo K. J. Org. Chem. 1996; 61: 494
    • 14b Yamamoto Y, Ota M, Kodama S, Michimoto K, Nomoto A, Ogawa A, Furuya M, Kawakami K. ACS Omega 2021; 6: 2239
    • 15a Ponra S, Nyadanu A, Kaim LE, Grimaud L, Vitale MR. Org. Lett. 2016; 16: 4060
    • 15b Amii H, Kobayashi T, Hatamoto Y, Uneyama K. Chem. Commun. 1999; 1323
    • 15c Moorthy JN, Senapati K, Parida KN. J. Org. Chem. 2010; 75: 8416