Synlett 2021; 32(16): 1657-1661
DOI: 10.1055/a-1608-5693
cluster
Modern Nickel-Catalyzed Reactions

Bathocuproine-Enabled Nickel-Catalyzed Selective Ullmann Cross-Coupling of Two sp2-Hybridized Organohalides

Yuqiang Li
a   College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. of China
,
Guoyin Yin
b   The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. of China
› Author Affiliations
The National Natural Science Foundation of China (21871211) and the Fundamental Research Funds for the Central Universities (2042019kf0208) supported this work.


Abstract

Cross-coupling reactions are essential for the synthesis of complex organic molecules. Here, we report a nickel-catalyzed Ullmann cross-coupling of two sp2-hybridized organohalides, featuring high cross-selectivity when the two coupling partners are used in a 1:1 ratio. The high chemoselectivity is governed by the bathocuproine ligand. Moreover, the mild reductive reaction conditions allow that a wide range of functional groups are compatible in this Ullmann cross-coupling.

Supporting Information



Publication History

Received: 29 July 2021

Accepted after revision: 24 August 2021

Accepted Manuscript online:
24 August 2021

Article published online:
31 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Johansson SC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 1b Tortajada A, Julia-Hernandez F, Borjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
    • 1c Korch KM, Watson DA. Chem. Rev. 2019; 119: 8192
    • 1d Zhang YF, Shi ZJ. Acc. Chem. Res. 2019; 52: 161
    • 1e Leitch DC, Becica J. Synlett 2020; 32: 641
    • 1f Yuan W, Zheng S, Hu Y. Synthesis 2020; 53: 1719
    • 1g Zhao Q, Peng C, Wang Y.-T, Zhan G, Han B. Org. Chem. Front. 2021; 8: 2772
    • 2a Busacca CA, Fandrick DR, Song JJ, Senanayake CH. Adv. Syn. Catal. 2011; 353: 1825
    • 2b Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 2c Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 3a Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 3b Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 3c Gao DW, Gu Q, You SL. J. Am. Chem. Soc. 2016; 138: 2544
    • 3d Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
    • 3e Grzybowski M, Sadowski B, Butenschon H, Gryko DT. Angew. Chem. Int. Ed. 2020; 59: 2998
    • 3f Le Z.-G, Zhu Z.-Q, Ji J.-J, Xie Z.-B, Tang J, Yuan E. Synthesis 2020; 53: 2277
    • 5a Noyori R. Nat. Chem. 2009; 1: 5
    • 5b Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 7a Amatore M, Gosmini C. Chem. Commun. 2008; 5019
    • 7b Krasovskiy A, Duplais C, Lipshutz BH. J. Am. Chem. Soc. 2009; 131: 15592
    • 7c Moncomble A, Le Floch P, Lledos A, Gosmini C. J. Org. Chem. 2012; 77: 5056
    • 7d Liu J, Ren Q, Zhang X, Gong H. Angew. Chem. Int. Ed. 2016; 55: 15544
    • 7e Ding D, Dong H, Wang C. CCS Chem. 2021; 3: 718
    • 7f Xu G.-L, Liu C.-Y, Pang X, Liu X.-Y, Shu X.-Z. CCS Chem. 2021; 3: 1147
    • 8a Everson DA, Buonomo JA, Weix DJ. Synlett 2014; 25: 233
    • 8b Zhang F, Spring DR. Chem. Soc. Rev. 2014; 43: 6906
    • 8c Zhang FL, Hong K, Li TJ, Park H, Yu JQ. Science 2016; 351: 252
    • 8d Wang Q, Zhang WW, Song H, Wang J, Zheng C, Gu Q, You SL. J. Am. Chem. Soc. 2020; 142: 15678
    • 8e Nohira I, Chatani N. ACS Catal. 2021; 11: 4644
    • 9a Cong F, Lv XY, Day CS, Martin R. J. Am. Chem. Soc. 2020; 142: 20594
    • 9b Kim UB, Jung DJ, Jeon HJ, Rathwell K, Lee SG. Chem. Rev. 2020; 120: 13382
    • 9c Sun SZ, Duan Y, Mega RS, Somerville RJ, Martin R. Angew. Chem. Int. Ed. 2020; 59: 4370
    • 9d Han X.-W, Zhang T, Yao W.-W, Chen H, Ye M. CCS Chem. 2021; 3: 955
    • 9e Jia Y, Liu Y.-Y, Lu L.-Q, Liu S.-H, Zhou H.-B, Lan Y, Xiao W.-J. CCS Chem. 2021; 3: 2032
    • 10a Ackerman LK, Lovell MM, Weix DJ. Nature 2015; 524: 454
    • 10b Olivares AM, Weix DJ. J. Am. Chem. Soc. 2018; 140: 2446
    • 10c Huang L, Ackerman LK. G, Kang K, Parsons AM, Weix DJ. J. Am. Chem. Soc. 2019; 141: 10978
    • 10d Kang K, Huang L, Weix DJ. J. Am. Chem. Soc. 2020; 142: 10634
    • 11a Dhital RN, Kamonsatikul C, Somsook E, Bobuatong K, Ehara M, Karanjit S, Sakurai H. J. Am. Chem. Soc. 2012; 134: 20250
    • 11b Dai L. Prog. Chem. 2018; 30: 1257
    • 11c Zuo Z, Kim RS, Watson DA. J. Am. Chem. Soc. 2021; 143: 1328
    • 11d Qiu H, Shuai B, Wang YZ, Liu D, Chen YG, Gao PS, Ma HX, Chen S, Mei TS. J. Am. Chem. Soc. 2020; 142: 9872
    • 12a Peng L, Li Y, Li Y, Wang W, Pang H, Yin G. ACS Catal. 2017; 8: 310
    • 12b Peng L, Li Z, Yin G. Org. Lett. 2018; 20: 1880
  • 13 Yin, G.; Peng, L.; Zhao, B.; Li, Y. ChemRxiv 2020, preprint; doi, 10.26434/chemrxiv.12318398.v1. This content is a preprint and has not been peer–reviewed
  • 14 Yamamoto T, Wakabayashi S, Osakada K. J. Organomet. Chem. 1992; 428: 223
  • 15 Wang X, Ma G, Peng Y, Pitsch CE, Moll BJ, Ly TD, Wang X, Gong H. J. Am. Chem. Soc. 2018; 140: 14490
    • 16a Xu H, Diccianni JB, Katigbak J, Hu C, Zhang Y, Diao T. J. Am. Chem. Soc. 2016; 138: 4779
    • 16b Yu P, Morandi B. Angew. Chem. Int. Ed. 2017; 56: 15693
    • 16c Xiong B, Wang T, Sun H, Li Y, Kramer S, Cheng G.-J, Lian Z. ACS Catal. 2020; 10: 13616
  • 17 See the Supporting Information for details.
  • 18 The general procedure as well as the analytical data of a few typical compounds are summarized as follows. Procedure: To an oven-dried 10 mL reaction tube equipped with a magnetic stir bar was introduced, in an argon-filled glove box, NiI2 (5.0 mol%, 7.8 mg), Bathocuproine (5 mol%, 9.0 mg), n-Bu4NBr (1.0 equiv, 161.2 mg) and zinc dust (1.5 equiv, 49 mg) were added. Then anhydrous DMA (4 mL) was added and the mixture was stirred, at which time aryl bromide (1 equiv, 0.5 mmol), alkenyl bromide (1 equiv, 0.5 mmol) were added to the resulting mixture in this order. The tube was sealed with a rubber stopper and stirred at r.t. for 10 h. After the reaction was complete, EtOAc (50 mL) was added and the mixture was extracted with H2O (20 mL × 3). The combined organic layers were dried over Na2SO4 and concentrated under reduced pressure. The resulting crude product was separated on a silica gel column with petroleum ether and EtOAc as eluent to afford the desired product. 4-(2-Methylprop-1-en-1-yl)phenyl 4-methylbenzenesulfonate (11): The reaction was conducted following the general procedure on a 0.5 mmol scale. The residue was purified by column chromatography on silica gel to afford the product 11 (90% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.72–7.68 (m, 2 H), 7.30–7.28 (m, 2 H), 7.12–7.09 (m, 2 H), 6.92–6.88 (m, 2 H), 6.18 (s, 1 H), 2.43 (s, 3 H), 1.87 (d, J = 1.6 Hz, 3 H), 1.80 (d, J = 1.4 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 147.5, 145.4, 137.7, 136.6, 132.6, 129.83, 129.80, 128.6, 123.9, 122.0, 26.9, 21.8, 19.4. HRMS (ESI): m/z calcd for C17H19O3S ([M + H]+): 303.1049; found: 303.1052.