Synlett 2021; 32(19): 1974-1980
DOI: 10.1055/a-1642-0598
letter

1,3-Dipolar [3+3] Cycloaddition of 1,4-Benzodiazepinone-Based Nitrones with α-Halohydroxamates for Diastereoselective Synthesis of Novel d-Edge Heterocycle-Fused 1,4-Benzodiazepinones

Heng Zhang
,
Lu-Yu Cai
,
Zhe Tang
,
Xiao-Zu Fan
,
Hui-Hui Wu
,
Xiao-Fan Bi
,
Hong-Wu Zhao
We thank the Beijing Municipal Commission of Education (JC015001200902), the Beijing Municipal Natural Science Foundation (7102010, 2122008, and 2172003), the Basic Research Foundation of Beijing University of Technology (X4015001201101), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR201008025), the Doctoral Scientific Research Start-up Foundation of Beijing University of Technology (52015001200701) for financial supports.


Abstract

Promoted by K2CO3 (2.0 equiv), the 1,3-dipolar [3+3] cy­cloaddition between 1, 4-benzodiazepinone-based nitrones and α-halohydroxamates processed smoothly under the mild reaction conditions and delivered structurally novel and complex cis- or trans-configured d-edge heterocycle-fused 1,4-benzodiazepinones in up to >99% isolated yield with >20:1 dr. The relative configuration of the title chemical entities was clearly identified with the use of single-crystal X-ray structure analysis. The reaction mechanism was assumed to interpret the diastereoselective production of the obtained cis- or trans-configured d-edge heterocycle-fused 1,4-benzodiazepinones.

Supporting Information



Publication History

Received: 27 July 2021

Accepted after revision: 09 September 2021

Accepted Manuscript online:
09 September 2021

Article published online:
01 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected examples, see:
    • 1a Hata M, Marshall GR. J. Comput.-Aided Mol. Des. 2006; 20: 321
    • 1b Gao K, Wu B, Yu C.-B, Chen Q.-A, Ye Z.-S, Zhou Y.-G. Org. Lett. 2012; 14: 3890
    • 1c Carlier PR, Zhao H, MacQuarrie-Hunter SL, DeGuzman JC, Hsu DC. J. Am. Chem. Soc. 2006; 128: 15215
    • 1d Neukom JD, Aquino AS, Wolfe JP. Org. Lett. 2011; 13: 2196
    • 1e Fier PS, Whittaker AM. Org. Lett. 2017; 19: 1454

      For selected examples, see:
    • 2a Moffett RB. J. Org. Chem. 1974; 39: 568
    • 2b Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
    • 2c De Clercq E. Med. Res. Rev. 1996; 16: 125
    • 2d Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Gould NP, Lundell GF, Homnick CF. J. Med. Chem. 1987; 30: 1229
    • 2e Tardibono LP, Miller MJ. Org. Lett. 2009; 11: 1575
    • 2f Araujo AC, Rauter AP, Nicotra F, Airoldi C, Costa B, Cipolla L. J. Med. Chem. 2011; 54: 1266
    • 2g Henderson EA, Alber DG, Baxter RC, Bithell SK, Budworth J, Carter MC, Chubb A, Cockerill GS, Dowdell VC. L, Fraser IJ, Harris RA, Keegan SJ, Kelsey RD, Lumley JA, Stables JN, Weerasekera N, Wilson LJ, Powell KL. J. Med. Chem. 2007; 50: 1685
    • 2h Cappelli A, Anzini M, Vomero S, Menziani MC, De Benedetti PG, Sbacchi M, Clarke GD, Mennuni L. J. Med. Chem. 1996; 39: 860
    • 2i Langlois N, Rojas-Rousseau A, Gaspard C, Werner GH, Darro F, Kiss R. J. Med. Chem. 2001; 44: 3754

      For selected examples, see:
    • 3a Neukom JD, Aquino AS, Wolfe JP. Org. Lett. 2011; 13: 2196
    • 3b Borisov RS, Polyakov AI, Medvedeva LA, Khrustalev VN, Guranova NI, Voskressensky LG. Org. Lett. 2010; 12: 3894
    • 3c Ferrini S, Ponticelli F, Taddei M. J. Org. Chem. 2006; 71: 9217
    • 3d Feng J, Zhou M, Lin X, Lu A, Zhang X, Zhao M. Org. Lett. 2019; 21: 6245
    • 3e Fier PS, Whittaker AM. Org. Lett. 2017; 19: 1454
    • 3f Huang Y, Khoury K, Chanas T, Dömling A. Org. Lett. 2012; 14: 5916
    • 3g Li X, Yang L, Zhang X, Zhang-Negrerie D, Du Y, Zhao K. J. Org. Chem. 2014; 79: 955

      For selected examples, see:
    • 4a Bilodeau DA, Margison KD, Serhan M, Pezacki JP. Chem. Rev. 2021; 121: 6699
    • 4b Murahashi S.-I, Imada Y. Chem. Rev. 2019; 119: 4684
    • 4c Hamer J, Macaluso A. Chem. Rev. 1964; 64: 473
    • 4d Anderson LL, Kroc MA, Reidl TW, Son J. J. Org. Chem. 2016; 81: 9521
    • 4e Pathipati SR, Singh V, Eriksson L, Selander N. Org. Lett. 2015; 17: 4506
    • 4f Sibi MP, Ma Z, Jasperse CP. J. Am. Chem. Soc. 2005; 127: 5764
    • 4g Sapeta K, Kerr MA. J. Org. Chem. 2007; 72: 8597
    • 4h Hori K, Kodama H, Ohta T, Furukawa I. J. Org. Chem. 1999; 64: 5017

      For selected examples, see:
    • 5a Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
    • 5b Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
    • 5c Spence GG, Taylor EC, Buchardt O. Chem. Rev. 1970; 70: 231
    • 5d Hori K, Kodama H, Ohta T, Furukawa I. J. Org. Chem. 1999; 64: 5017
    • 5e Shindo M, Itoh K, Tsuchiya C, Shishido K. Org. Lett. 2002; 4: 3119
    • 5f Huang Z.-Z, Kang Y.-B, Zhou J, Ye M.-C, Tang Y. Org. Lett. 2004; 6: 1677
    • 5g Mita T, Ohtsuki N, Ikeno T, Yamada T. Org. Lett. 2002; 4: 2457
    • 5h Jakowiecki J, Loska R, Makosza M. J. Org. Chem. 2008; 73: 5436
    • 5i Lu C, Dubrovskiy AV, Larock RC. J. Org. Chem. 2012; 77: 2279
    • 5j Tian Z, Xu J, Liu B, Tan Q, Xu B. Org. Lett. 2018; 20: 2603

      For selected examples, see:
    • 6a Haun G, Paneque AN, Almond DW, Austin BE, Moura-Letts G. Org. Lett. 2019; 21: 1388
    • 6b Shintani R, Murakami M, Hayashi T. J. Am. Chem. Soc. 2007; 129: 12356
    • 6c Stevens AC, Palmer C, Pagenkopf BL. Org. Lett. 2011; 13: 1528
    • 6d Hu L, Rombola M, Rawal VH. Org. Lett. 2018; 20: 5384
    • 6e Adly FG, Marichev KO, Jensen JA, Arman H, Doyle MP. Org. Lett. 2019; 21: 40
    • 6f Gothelf KV, Thomsen I, Jørgensen KA. J. Am. Chem. Soc. 1996; 118: 59
    • 6g Qin C, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 14516
    • 6h Viton F, Bernardinelli G, Kündig EP. J. Am. Chem. Soc. 2002; 124: 4968
    • 6i Kano T, Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2005; 127: 11926
    • 6j Suga H, Nakajima T, Itoh K, Kakehi A. Org. Lett. 2005; 7: 1431

      For selected examples, see:
    • 7a Tangara S, Aupic C, Kanazawa A, Poisson J.-F, Py S. Org. Lett. 2017; 19: 4842
    • 7b Carmona D, Lamata MP, Viguri F, Rodríguez R, Oro LA, Lahoz FJ, Balana AI, Tejero T, Merino P. J. Am. Chem. Soc. 2005; 127: 13386
    • 7c Valenza S, Cordero FM, Brandi A, Guidi A, Altamura M, Giolitti A, Giuntini F, Pasqui F, Renzetti AR, Maggi CA. J. Org. Chem. 2000; 65: 4003
    • 7d Cardona F, Valenza S, Picasso S, Goti A, Brandi A. J. Org. Chem. 1998; 63: 7311
    • 7e de March P, Escoda M, Figueredo M, Font J, Alvarez-Larena A, Piniella JF. J. Org. Chem. 1997; 62: 7781
    • 7f García Ruano JL, Fraile A, Martín Castro AM, Martín MR. J. Org. Chem. 2005; 70: 8825
    • 7g White JD, Blakemore PR, Korf EA, Yokochi AF. T. Org. Lett. 2001; 3: 413
    • 7h Cardona F, Goti A, Brandi A. Org. Lett. 2003; 5: 1475
    • 7i Ueda T, Inada M, Okamoto I, Morita N, Tamura O. Org. Lett. 2008; 10: 2043

      For selected examples, see:
    • 8a Wu S.-Y, Chen W.-L, Ma X.-P, Liang C, Su G.-F, Mo D.-L. Adv. Synth. Catal. 2019; 361: 965
    • 8b Yang H.-B, Shi M. Org. Biomol. Chem. 2012; 10: 8236
    • 8c Maiuolo L, Merino P, Algieri V, Nardi M, Di Gioia ML, Russo B, Delso I, Tallarida MA, De Nino A. RSC Adv. 2017; 7: 48980
    • 8d Lin W, Zhan G, Shi M, Du W, Chen Y. Chin. J. Chem. 2017; 35: 857
    • 8e Mehrdad M, Faraji L, Jadidi K, Eslami P, Sureni H. Monatsh. Chem. 2011; 142: 917

      For selected examples, see:
    • 9a Aversa MC, Giannetto P, Ferlazzo A, Romeo G. J. Chem. Soc., Perkin Trans. 1 1982; 2701
    • 9b Freeman JP, Duchamp DJ, Chidester CG, Slomp G, Szmuszkovicz J, Raban M. J. Am. Chem. Soc. 1982; 104: 1380
    • 9c Bourke S, Heaney F. Tetrahedron Lett. 1995; 36: 7527

      For selected examples, see:
    • 10a Kwon Y, Choi S, Jang HS, Kim S.-G. Org. Lett. 2020; 22: 1420
    • 10b Acharya A, Anumandla D, Jeffrey CS. J. Am. Chem. Soc. 2015; 137: 14858
    • 10c Acharya A, Montes K, Jeffrey CS. Org. Lett. 2016; 18: 6082
    • 10d Zhang K, Xu X, Zheng J, Yao H, Huang Y, Lin A. Org. Lett. 2017; 19: 2596
    • 10e Zhang K, Yang C, Yao H, Lin A. Org. Lett. 2016; 18: 4618
    • 10f Cheng X, Cao X, Xuan J, Xiao W.-J. Org. Lett. 2018; 20: 52
    • 10g Feng J, Zhao M, Lin X. J. Org. Chem. 2019; 84: 9548
    • 10h Feng J, Zhou M, Lin X, Lu A, Zhang X, Zhao M. Org. Lett. 2019; 21: 6245
    • 10i Xu X, Zhang K, Li P, Yao H, Lin A. Org. Lett. 2018; 20: 1781
  • 11 Typical Procedure and Characterization Data for 3db A mixture of 1,4-benzodiazepinone-based nitrones 1d (1.0 equiv, 0.1 mmol), α-halohydroxamates 2b (2.0 equiv, 0.2 mmol), and K2CO3 (2.0 equiv, 0.2 mmol) in TFE (2.0 mL) was stirred at room temperature for 0.5–1 h until 1,4-benzodiazepinone-based nitrones were consumed completely indicated by TLC plate. The reaction mixture was concentrated under reduced pressure, and the crude products were purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 to 7:1) to afford product cis- 3db, 94% yield; mp 227.0–227.2 °C. 1H NMR (400 MHz, CDCl3): δ = 4.43 (d, J = 8 Hz, 1 H), 7.67 (d, J = 2 Hz, 1 H), 7.63 (td, J = 7.2, 1.2 Hz, 1 H), 7.59–7.55 (m, 3 H), 7.46–7.42 (m, 1 H), 7.38 (dd, J = 8.4, 2.4 Hz 1 H), 7.35–7.30 (m, 4 H), 7.28–7.26 (m, 4 H), 7.15–7.03 (m, 6 H), 5.76 (s, 1 H), 5.05 (d, J = 8.4 Hz, 1 H), 4.45 (d, J = 15.6 Hz, 1 H), 4.27 (d, J = 2 Hz, 1 H), 3.53 (d, J = 16 Hz, 1 H), 3.47 (d, J = 11.2 Hz, 1 H), 3.03 (d, J = 8.4 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 164.9, 163.9, 140.0, 137.1, 135.9, 134.0, 132.8, 132.5, 132.2, 131.9, 130.7, 130.6, 130.2, 130.1, 129.8, 129.5, 128.9, 128.8, 128.7, 128.5, 128.2, 127.9, 127.5, 126.7, 124.7, 123.7, 90.1, 82.1, 58.9, 53.1 ppm. HRMS (ESI): m/z calcd for C37H29BrClN3O4 [M + H]+: 694.1108; found: 694.1103.
  • 12 CCDC 2046001 (trans-3dg) and CCDC 2106234 (cis-3cd) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www. ccdc.cam.ac.uk/structures

    • For selected examples, see:
    • 13a An Y, Xia H, Wu J. Chem. Commun. 2016; 52: 10415
    • 13b Zhao H.-W, Zhao Y.-D, Liu Y.-Y, Zhao L.-J, Feng N.-N, Pang H.-L, Chen X.-Q, Song X.-Q, Du J. RSC Adv. 2017; 7: 12916
    • 13c Luo Y, Chen C.-H, Zhu F, Mo D.-L. Org. Biomol. Chem. 2020; 18: 8209
    • 13d Lin W, Zhan G, Shi M, Du W, Chen Y. Chin. J. Chem. 2017; 35: 857