Synthesis 2022; 54(07): 1833-1842
DOI: 10.1055/a-1644-2930
paper

Oxalylacetylenes as Dielectrophiles for Annulation of Quinoline Rings: Synthesis of Highly Functionalized 1,3-Oxazinoquinolines

Kseniya V. Belyaeva
,
Lina P. Nikitina
,
Veronika S. Gen’
,
Andrei V. Afonin
,
Boris A. Trofimov
This work has been approved by plans for research projects at the IPC Russian Academy of Sciences (State Registration No. AAAA-A16-116112510005-7).


Abstract

Oxalylacetylenes act as dielectrophiles in the annulation of quinolines to give highly functionalized 1,3-oxazine cycles decorated with ethynyl, oxalyl, ester and aryl substituents. The annulation proceeds under mild conditions (room temperature, without catalyst) in 2:1 mode with respect to acetylene and quinoline to deliver 1,3-oxazinoquinolines in 45–88% yields. A beneficial feature of the reaction is that, in contrast to results on the reaction of quinolines with trifluoroacetylacetylenes in the presence of water, where H2O acted as a third electrophile, leading to the 1,3-oxazinoquinolines containing a hydroxyl group, this reaction well tolerates the aqueous medium. This reaction also tolerates isoquinoline and phenanthridine.

Supporting Information



Publication History

Received: 02 August 2021

Accepted after revision: 14 September 2021

Accepted Manuscript online:
14 September 2021

Article published online:
21 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zinad DS, Mahal A, Mohapatra RK, Sarangi AK, Pratama MR. F. Chem. Biol. Drug Des. 2020; 95: 16
    • 2a Young SD, Britcher SF, Tran LO, Payne LS, Lumma WC, Lyle TA, Huff JR, Anderson PS, Olsen DB, Carroll SS, Pettibone DJ, O’Brien JA, Ball RG, Balani SK, Lin JH, Chen I.-W, Schleif WA, Sardana VV, Long WJ, Byrnes VW, Emin EA. Antimicrob. Agents Chemother. 1995; 39: 2602
    • 2b De Clercq E. J. Clin. Virol. 2004; 30: 115
    • 3a Schlichter R, Rybalchenko V, Poisbeau P, Verleye M, Gillardin J.-M. Neuropharmacology 2000; 39: 1523
    • 3b Hamon A, Morel A, Hue B, Verleye M, Gillardin J.-M. Neuropharmacology 2003; 45: 293
    • 4a Benameur L, Bouaziz Z, Nebois P, Bartoli M.-H, Boitard H. Chem. Pharm. Bull. 1996; 44: 605
    • 4b Ma C, Liu S.-J, Xin L, Zhang Q, Ding K, Falck JR, Shin D.-S. Chem. Lett. 2006; 35: 1010
    • 5a Biju AT, Bhunia A, Shanmugam D. US 9206196 B1 20151208, 2015 ; Chem. Abstr. 2015, 164, 69156
    • 5b Tiwari V, Meshram J, Ali P, Sheikh J, Tripathi U. J. Enzyme Inhib. Med. Chem. 2011; 26: 569
  • 6 Cherkauskas JP, Klos AM, Borzilleri RM, Sisko J, Weinreb SM. Tetrahedron 1996; 52: 3135
    • 7a Li Y, Yu J, Bi Y, Yan G, Huang D. Adv. Synth. Catal. 2019; 361: 4839
    • 7b Trofimov BA, Belyaeva KV. Tetrahedron Lett. 2020; 61: 151991
    • 7c Mirzaei A, Turczel G, Nagyházi M, Farkas V, Balla Á, Vu HD, Tuba R. Eur. J. Org. Chem. 2021; 326
    • 8a Yavari I, Mirzaei A, Moradi L, Hosseini N. Tetrahedron Lett. 2008; 49: 2355
    • 8b Nair V, Devipriya S, Suresh E. Tetrahedron 2008; 64: 3567
    • 8c Teimouri MB, Abbasi T, Ahmadian S, Heravi MR. P, Bazhrang R. Tetrahedron 2009; 65: 8120
    • 8d Yavari I, Mirzaei A, Moradi L, Khalili G. Tetrahedron Lett. 2010; 51: 396
    • 8e Maghsoodlou MT, Habibi-Khorassani SM, Moradi A, Hazeri N, Davodi A, Sajadikhah SS. Tetrahedron 2011; 67: 8492
    • 8f Sun T, Cai Q, Li M, Wang Z, Chen J, Deng H, Shao M, Zhang H, Cao W. Tetrahedron 2015; 71: 622
  • 9 Gers-Panthera CF, Muller TJ. J. Adv. Heterocycl. Chem. 2016; 120: 67
  • 10 Belyaeva KV, Nikitina LP, Afonin AV, Vashchenko AV, Muzalevskiy VM, Nenajdenko VG, Trofimov BA. Org. Biomol. Chem. 2018; 16: 8038
  • 11 Muzalevskiy VM, Trofimov BA, Belyaeva KV, Nenajdenko VG. Green Chem. 2019; 21: 6353
  • 12 Zhao HY, Li YM, Gong TJ, Guo QX. Chin. Chem. Lett. 2011; 22: 1013
  • 13 Yang J, Wang Z, He Z, Li G, Hong L, Sun W, Wang R. Angew. Chem. Int. Ed. 2020; 59: 642