Synlett 2022; 33(07): 637-654
DOI: 10.1055/a-1688-0826
account

The [4.3.0] Piperidine Alkaloids: Architectures, Biology, Biosyntheses, and the Complete Details of the Asymmetric Syntheses of Streptazone A and Abikoviromycin

Gustav J. Wørmer
,
Novo Nordisk Foundation (NNF19OC0054782) to T.B.P.; Carlsberg foundation (CF17-0800) to T.B.P.


Abstract

Piperidine alkaloids continue to challenge the synthetic community by featuring densely functionalized scaffolds that often require careful chemical orchestration. Streptazone A and abikoviromycin are small and highly functionalized piperidine alkaloids, both accommodating Michael acceptors and a labile epoxide. These moieties are loaded into a [4.3.0] bicyclic core also present in other structurally related natural products, including the well-known piperidine alkaloid streptazolin. Here, we cover ring-closing strategies employed in earlier streptazolin syntheses; provide a concise overview of structures, biological properties, and biosyntheses of selected [4.3.0] piperidine alkaloids; and, finally, provide complete coverage of our recent asymmetric syntheses of streptazone A and abikoviromycin.

1 Introduction

2 Streptazolin Syntheses

3 Epo-[4.3.0] Piperidine Alkaloids

3.1 Streptazones

3.2 Abikoviromycin

3.3 Strepchazolin A and B

3.4 Hatomamicin

3.5 Kobutimycin A and B

3.6 Camporidines A and B

3.7 Epostatin

3.8 N-Hydroxydihydroabikoviromycin

3.9 Dihydroabikoviromycin

3.10 Biosynthesis of Streptazone E and Camporidines

4 Syntheses of the Streptazones and Abikoviromycin

4.1 Retrosynthesis

4.2 Results and Discussion

5 Conclusion



Publication History

Received: 27 October 2021

Accepted after revision: 05 November 2021

Accepted Manuscript online:
05 November 2021

Article published online:
03 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Wørmer GJ, Villadsen NL, Nørby P, Poulsen TB. Angew. Chem. Int. Ed. 2021; 60: 10521
  • 2 In this account, we refer to C5–C6 epoxide congeners as epo-[4.3.0].
  • 3 Drautz H, Zähner H, Kupfer E, Keller-Schierlein W. Helv. Chim. Acta 1981; 64: 1752
  • 4 Karrer A, Dobler M. Helv. Chim. Acta 1982; 65: 1432
  • 5 Perry JA, Koteva K, Verschoor CP, Wang W, Bowdish DM, Wright GD. J. Antibiot. 2015; 68: 40
  • 6 Harada N, Nakanishi K. J. Am. Chem. Soc. 1969; 91: 3989
    • 7a Kozikowski AP, Park PU. J. Am. Chem. Soc. 1985; 107: 1763
    • 7b Flann CJ, Overman LE. J. Am. Chem. Soc. 1987; 109: 6115
    • 7c Yamada H, Aoyagi S, Kibayashi C. J. Am. Chem. Soc. 1996; 118: 1054
    • 7d Huang S, Comins DL. Chem. Commun. 2000; 569
    • 7e Nomura I, Mukai C. Org. Lett. 2002; 4: 4301
    • 7f Li F, Warshakoon NC, Miller MJ. J. Org. Chem. 2004; 69: 8836
    • 7g Trost BM, Chung CK, Pinkerton AB. Angew. Chem. Int. Ed. 2004; 43: 4327
  • 8 We have not been able to verify from the literature that (±)-α-hydroxystreptazolone is a natural product.
  • 9 Puder C, Krastel P, Zeeck A. J. Nat. Prod. 2000; 63: 1258
  • 10 Liu Q.-F, Wang J.-D, Wang X.-J, Liu C.-X, Zhang J, Pang Y.-W, Yu C, Xiang W.-S. J. Asian Nat. Prod. Res. 2013; 15: 221
  • 11 Umezawa H, Tazaki T, Fukuyama S. Jpn. Med. J. 1951; 4: 331
  • 12 Onda M, Konda Y, Narimatsu Y, Tanaka H, Awaya J, Omura S. Chem. Pharm. Bull. 1974; 22: 2916
  • 13 Gurevich A, Kolosov M, Korobko V, Onoprienko V. Tetrahedron Lett. 1968; 9: 2209
  • 14 Kono Y, Takeuchi S, Yonehara H, Marumo F, Saito Y. J. Antibiot. 1970; 23: 572
  • 15 Maruyama H, Okamoto S, Kubo Y, Tsuji G, Fujii I, Ebizuka Y, Furihata K, Hayakawa Y, Nagasawa H, Sakuda S. J. Antibiot. 2003; 56: 801
  • 16 Gurevich A, Kolosov M, Korobko V, Onoprienko V. Chem. Nat. Compd. 1971; 7: 92
  • 17 Mitchell D, Liebeskind LS. J. Am. Chem. Soc. 1990; 112: 291
  • 18 We speculate that the authors meant μg/mL.
  • 19 Yang C.-L, Wang Y.-S, Liu C.-L, Zeng Y.-J, Cheng P, Jiao R.-H, Bao S.-X, Huang H.-Q, Tan R.-X, Ge H.-M. Mar. Drugs 2017; 15: 244
  • 20 Imai H, Fujita S, Suzuki K, Morioka M, Tokunaga T, Shimizu M, Kadota S, Furuya T, Saito T. J. Antibiot. 1989; 42: 1043
  • 21 Kanbe K, Naganawa H, Okami Y, Takeuchi T. J. Antibiot. 1992; 45: 1700
  • 22 We speculate that the authors actually meant CHCl3.
  • 23 Hong S.-H, Ban YH, Byun WS, Kim D, Jang Y.-J, An JS, Shin B, Lee SK, Shin J, Yoon YJ, Oh D.-C. J. Nat. Prod. 2019; 82: 903
  • 24 Akiyama T, Harada S, Kojima F, Kinoshita N, Hamada M, Muraoka Y, Aoyagi T, Takeuchi T. J. Antibiot. 1998; 51: 253
  • 25 The data are not shown in the study.
  • 26 Takahashi S, Serita K, Enokita R, Okaza T, Haneishi T. Annu. Rep. Sankyo Res. Lab. 1986; 38: 105
    • 27a Holmalahti J, Mäki-Paakkanen J, Kangas L, von Wright A. Mutat. Res., Genet. Toxicol. 1996; 368: 157
    • 27b Holmalahti J, Raatikainen O, von Wright A, Laatsch H, Spohr A, Lyngberg O, Nielsen J. J. Appl. Microbiol. 1998; 85: 61
  • 28 Note that streptenol C has also been referred to as streptenol D by Mayer and Thiericke (see ref. 32).
  • 29 Arnone A, Cardillo R, Nasini G, de Pava OV, Quaroni S. Phytochemistry 1988; 27: 3611
  • 30 Grabley S, Hammann P, Kluge H, Wink J, Kricke P, Zeeck A. J. Antibiot. 1991; 44: 797
  • 31 Puder C, Loya S, Hizi A, Zeeck A. J. Nat. Prod. 2001; 64: 42
  • 32 Mayer M, Thiericke R. J. Org. Chem. 1993; 58: 3486
  • 33 Ohno S, Katsuyama Y, Tajima Y, Izumikawa M, Takagi M, Fujie M, Satoh N, Shin-ya K, Ohnishi Y. ChemBioChem 2015; 16: 2385
  • 34 Kaneko Y, Terashima T, Kuroda Y. Agric. Biol. Chem. 1968; 32: 783
  • 35 Terashima T, Kuroda Y, Kaneko Y. Tetrahedron Lett. 1969; 10: 2535
    • 36a Ye S, Braña AF, González-Sabín J, Morís F, Olano C, Salas JA, Méndez C. Front. Microbiol. 2018; 9: 252
    • 36b Ye S, Molloy B, Braña AF, Zabala D, Olano C, Cortés J, Morís F, Salas JA, Méndez C. Front. Microbiol. 2017; 8: 194
  • 37 Wei L.-L, Mulder JA, Xiong H, Zificsak CA, Douglas CJ, Hsung RP. Tetrahedron 2001; 57: 459
  • 38 Hunter C, Jackson RF, Rami HK. J. Chem. Soc., Perkin Trans. 1 2001; 1349
    • 39a Witulski B, Stengel T. Angew. Chem. Int. Ed. 1998; 37: 489
    • 39b Witulski B, Stengel T. Angew. Chem. Int. Ed. 1999; 38: 2426
  • 40 Dunetz JR, Danheiser RL. Org. Lett. 2003; 5: 4011
  • 41 Jacobsen EN, Zhang W, Muci AR, Ecker JR, Deng L. J. Am. Chem. Soc. 1991; 113: 7063
  • 42 Zhang Y, Hsung RP, Tracey MR, Kurtz KC, Vera EL. Org. Lett. 2004; 6: 1151
  • 43 Riddell N, Villeneuve K, Tam W. Org. Lett. 2005; 7: 3681
  • 44 Mansfield SJ, Campbell CD, Jones MW, Anderson EA. Chem. Commun. 2015; 51: 3316
  • 45 Dooleweerdt K, Birkedal H, Ruhland T, Skrydstrup T. J. Org. Chem. 2008; 73: 9447
  • 46 Hjerrild P, Tørring T, Poulsen TB. Nat. Prod. Rep. 2020; 37: 1043
  • 47 Zhang W, Yamamoto H. J. Am. Chem. Soc. 2007; 129: 286
    • 48a Ogawa Y, Tsuruoka T, Shomura T, Watanabe H, Inouye S, Niida T. J. Antibiot. 1973; 26: 186
    • 48b Tsuruoka T, Shomura T, Ogawa Y, Ezaki N, Watanabe H, Amano S, Inouye S, Niida T. J. Antibiot. 1973; 26: 168
    • 49a Jackman H, Marsden SP, Shapland P, Barrett S. Org. Lett. 2007; 9: 5179
    • 49b Matsushita T, Ashida H, Kimachi T, Takemoto Y. Chem. Commun. 2002; 814
    • 49c Scott WJ, Stille JK. J. Am. Chem. Soc. 1986; 108: 3033
    • 50a Pelletier G, Bechara WS, Charette AB. J. Am. Chem. Soc. 2010; 132: 12817
    • 50b Schedler DJ, Godfrey AG, Ganem B. Tetrahedron Lett. 1993; 34: 5035
    • 50c Das S, Addis D, Zhou S, Junge K, Beller M. J. Am. Chem. Soc. 2010; 132: 1770 ; corrigendum: J. Am. Chem. Soc. 2010, 132, 4971
  • 51 Cheng C, Brookhart M. J. Am. Chem. Soc. 2012; 134: 11304
    • 52a Kakei H, Tsuji R, Ohshima T, Shibasaki M. J. Am. Chem. Soc. 2005; 127: 8962
    • 52b Ohshima T, Nemoto T, Tosaki S.-y, Kakei H, Gnanadesikan V, Shibasaki M. Tetrahedron 2003; 59: 10485
  • 53 Aoki M, Seebach D. Helv. Chim. Acta 2001; 84: 187