Synthesis 2022; 54(15): 3383-3398
DOI: 10.1055/a-1702-6193
special topic
Bürgenstock Special Section 2021 – Future Stars in Organic Chemistry

Applications of Photoredox Catalysis for the Radical-Induced Cleavage of C–C Bonds

Jaro Vanderghinste
,
Shoubhik Das
We thank Fondation Francqui - Stichting (Francqui lecturer award of S.D.) for their generous support.


Abstract

Selective cleavage of C–C bonds forms one of the greatest challenges in current organic chemistry, due to the relative strength of these bonds. However, such transformations are an invaluable instrument to break down and construct new carbon–carbon bonds. To achieve this, photochemistry can be used as a tool to generate radicals and induce the cleavage of these bonds due to their high reactivity. This review examines some of the most influential contributions in this field since 2010.

1 Introduction

2 C–C Bond Cleavage

2.1 Homogeneous Catalyst

2.1.1 N-Centered Radical

2.2.2 O-Centered Radical

2.2 Heterogeneous Catalyst

3 C=C Bond Cleavage

3.1 Homogeneous Catalyst

3.2 Heterogeneous Catalyst

4 C≡C Bond Cleavage

4.1 Homogeneous Catalyst

4.2 Heterogeneous Catalyst

5 Conclusion



Publication History

Received: 17 October 2021

Accepted after revision: 22 November 2021

Accepted Manuscript online:
22 November 2021

Article published online:
02 February 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Crabtree RH, Dion RP, Gibboni DJ, McGrath DV, Holt EM. J. Am. Chem. Soc. 1986; 108: 7222
    • 1b Terao Y, Wakui H, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2001; 123: 10407
    • 1c Kondo T, Nakamura A, Okada T, Suzuki N, Wada K, Mitsudo T.-a. J. Am. Chem. Soc. 2000; 122: 6319
    • 1d Tokunaga M, Aoyama H, Shirogane Y, Obora Y, Tsuji Y. Catal. Today 2006; 117: 138
  • 2 Rybtchinski B, Milstein D. Angew. Chem. Int. Ed. 1999; 38: 870
  • 3 Martinho Simões JA, Beauchamp JL. Chem. Rev. 1990; 90: 629
  • 4 Nolan SP, Hoff CD, Stoutland PO, Newman LJ, Buchanan JM, Bergman RG, Yang GK, Peters KS. J. Am. Chem. Soc. 1987; 109: 3143
  • 5 Adams DM, Chatt J, Guy RG, Sheppard N. J. Chem. Soc. 1961; 738
  • 6 Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 7a Wu X, Zhu C. Chin. J. Chem. 2018; 37: 171
    • 7b Sivaguru P, Wang Z, Zanoni G, Bi X. Chem. Soc. Rev. 2019; 48: 2615
    • 8a Jin J, MacMillan DW. C. Nature 2015; 525: 87
    • 8b Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 8c Neumeier M, Chakraborty U, Schaarschmidt D, de la Pena O’Shea V, Perez-Ruiz R, von Wangelin AJ. Angew. Chem. Int. Ed. 2020; 59: 13473
    • 9a Cauwenbergh R, Das S. Green Chem. 2021; 23: 2553
    • 9b Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
    • 9c Twilton J, Le CC, Zhang P, Shaw H, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
  • 10 Cai S, Zhao X, Wang X, Liu Q, Li Z, Wang DZ. Angew. Chem. Int. Ed. 2012; 51: 8050
  • 11 Yu X.-Y, Zhao Q.-Q, Chen J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 57: 15505
  • 12 Lu B, Cheng Y, Chen L.-Y, Chen J.-R, Xiao W.-J. ACS Catal. 2019; 9: 8159
  • 13 Fan X, Lei T, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2019; 21: 4153
  • 14 Pratt DA, Blake JA, Mulder P, Walton JC, Korth HG, Ingold KU. J. Am. Chem. Soc. 2004; 126: 10667
  • 15 Xia P.-J, Ye Z.-P, Hu Y.-Z, Song D, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2019; 21: 2658
  • 16 Ladouceur S, Fortin D, Zysman-Colman E. Inorg. Chem. 2011; 50: 11514
  • 17 Stache EE, Ertel AB, Tomislav R, Doyle AG. ACS Catal. 2018; 8: 11134
  • 18 Sun H, Yang C, Gao F, Li Z, Xia W. Org. Lett. 2013; 15: 624
  • 19 Gazi S, Hung Ng WK, Ganguly R, Putra Moeljadi AM, Hirao H, Soo HS. Chem. Sci. 2015; 6: 7130
    • 20a Nichols JM, Bishop LM, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2010; 132: 12554
    • 20b Nguyen JD, Matsuura BS, Stephenson CR. J. Am. Chem. Soc. 2014; 136: 1218
  • 21 Gazi S, Đokić M, Moeljadi AM. P, Ganguly R, Hirao H, Soo HS. ACS Catal. 2017; 7: 4682
  • 22 Wang Y, Liu Y, He J, Zhang Y. Sci. Bull. 2019; 64: 1658
  • 23 Guo J.-J, Hu A, Chen Y, Sun J, Tang H, Zuo Z. Angew. Chem. Int. Ed. 2016; 55: 15319
  • 24 Yayla HG, Wang H, Tarantino KT, Orbe HS, Knowles RR. J. Am. Chem. Soc. 2016; 138: 10794
  • 25 Ota E, Wang H, Frye NL, Knowles RR. J. Am. Chem. Soc. 2019; 141: 1457
  • 26 Wang D, Mao J, Zhu C. Chem. Sci. 2018; 9: 5805
  • 27 Jia K, Zhang F, Huang H, Chen Y. J. Am. Chem. Soc. 2016; 138: 1514
  • 28 Zhao K, Yamashita K, Carpenter JE, Sherwood TC, Ewing WR, Cheng PT. W, Knowles RR. J. Am. Chem. Soc. 2019; 141: 8752
  • 29 Shi J.-L, Wang Z, Zhang R, Wang Y, Wang J. Chem. Eur. J. 2019; 25: 8992
  • 30 Chen Y, Du J, Zuo Z. Chem 2020; 6: 266
  • 31 Nguyen ST, McLoughlin EA, Cox JH, Fors BP, Knowles RR. J. Am. Chem. Soc. 2021; 143: 12268
  • 32 Du J, Yang X, Wang X, An Q, He X, Pan H, Zuo Z. Angew. Chem. Int. Ed. 2021; 60: 5370
  • 33 Li KK, Lu YJ, Song XH, She ZG, Wu XW, An LK, Ye CX, Lin YC. Bioorg. Med. Chem. Lett. 2010; 20: 3326
  • 34 Liu Q, Zhang J, Zhang L, Mo F. Tetrahedron 2021; 80: 131867
    • 35a Doucet H. Eur. J. Org. Chem. 2008; 2008: 2013
    • 35b Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
  • 36 Vinodgopal K, Wynkoop DE, Kamat PV. Environ. Sci. Technol. 1996; 30: 1660
    • 37a Jia X, Han Q, Zheng M, Bi H. Appl. Surf. Sci. 2019; 489: 409
    • 37b Fouda A, Salem SS, Wassel AR, Hamza MF, Shaheen TI. Heliyon 2020; 6: e04896
    • 37c Yulizar Y, Eprasatya A, Apriandanu DO. B, Yunarti RT. Vacuum 2021; 183: 109821
    • 37d Du P, Bueno-López A, Verbaas M, Almeida AR, Makkee M, Moulijn JA, Mul G. J. Catal. 2008; 260: 75
  • 38 Jin X, Li C, Xu C, Guan D, Cheruvathur A, Wang Y, Xu J, Wei D, Xiang H, Niemantsverdriet JW, Li Y, Guo Q, Ma Z, Su R, Yang X. J. Catal. 2017; 354: 37
  • 39 Li C, Wang X, Cheruvathur A, Shen Y, Xiang H, Li Y, Niemantsverdriet JW, Su R. J. Catal. 2018; 365: 313
  • 40 Liu H, Li H, Lu J, Zeng S, Wang M, Luo N, Xu S, Wang F. ACS Catal. 2018; 8: 4761
    • 41a Ballini R, Bosica G, Fiorini D, Palmieri A, Petrini M. Chem. Rev. 2005; 105: 933
    • 41b Muniz K, Hovelmann CH, Streuff J. J. Am. Chem. Soc. 2008; 130: 763
    • 43a Deshmukh PH, Blechert S. Dalton Trans. 2007; 2479
    • 43b McReynolds MD, Dougherty JM, Hanson PR. Chem. Rev. 2004; 104: 2239
    • 44a Bell S, Wustenberg B, Kaiser S, Menges F, Netscher T, Pfaltz A. Science 2006; 311: 642
    • 44b Scharnagl FK, Hertrich MF, Ferretti F, Kreyenschulte C, Lund H, Jackstell R, Beller M. Sci. Adv. 2018; 4: eaau1248
    • 46a Matyjaszewski K, Sigwalt P. Polym. Int. 1994; 35: 1
    • 46b Matyjaszewski K. Makromol. Chem., Macromol. Symp. 1992; 54: 51
  • 47 Criegee R. Angew. Chem. Int. Ed. Engl. 1975; 14: 745
  • 48 Pappo R, Allen DJr, Lemieux R, Johnson W. J. Org. Chem. 1956; 21: 478
    • 49a Schilling W, Zhang Y, Sahoo PK, Sarkar SK, Sivaraman G, Roesky HW, Das S. Green Chem. 2021; 23: 379
    • 49b Zhang Y, Schilling W, Riemer D, Das S. Nat. Protoc. 2020; 15: 822
    • 49c Schilling W, Zhang Y, Riemer D, Das S. Chem. Eur. J. 2020; 26: 390
    • 49d Zhang Y, Schilling W, Das S. ChemSusChem 2019; 12: 2898
    • 49e Kollmann J, Zhang Y, Schilling W, Zhang T, Riemer D, Das S. Green Chem. 2019; 21: 1916
    • 49f Zhang Y, Riemer D, Schilling W, Kollmann J, Das S. ACS Catal. 2018; 8: 6659
    • 49g Schilling W, Riemer D, Zhang Y, Hatami N, Das S. ACS Catal. 2018; 8: 5425
  • 50 Itoh A, Kodama T, Masaki Y, Inagaki S. Synlett 2002; 522
  • 51 Hirashima S.-i, Kudo Y, Nobuta T, Tada N, Itoh A. Tetrahedron Lett. 2009; 50: 4328
  • 52 Itoh A, Fujiya A, Kariya A, Nobuta T, Tada N, Miura T. Synlett 2014; 25: 884
  • 53 Murthy RS, Bio M, You Y. Tetrahedron Lett. 2009; 50: 1041
  • 54 Singh AK, Chawla R, Yadav LD. S. Tetrahedron Lett. 2015; 56: 653
  • 55 Wang D, Li J, Cai S, Chen J, Zhao Y. Synlett 2014; 25: 1626
  • 56 Park S, Jeon WH, Yong W.-S, Lee PH. Org. Lett. 2015; 17: 5060
  • 57 Vilsmeier A, Haack A. Chem. Ber. 1927; 60: 119
  • 58 Friedel C, Crafts JM. J. Chem. Soc. 1877; 32: 725
    • 59a Gers CF, Rosellen J, Merkul E, Muller TJ. Beilstein J. Org. Chem. 2011; 7: 1173
    • 59b Sigrist R, Hansen H.-J. Helv. Chim. Acta 2010; 93: 1545
    • 60a Ando W, Saiki T, Migita T. J. Am. Chem. Soc. 1975; 97: 5028
    • 60b Eriksen J, Foote CS, Parker TL. J. Am. Chem. Soc. 1977; 99: 6455
  • 61 Cao S, Zhong S, Xin L, Wan J.-P, Wen C. ChemCatChem 2015; 7: 1478
  • 62 Deng Y, Wei X.-J, Wang H, Sun Y, Noël T, Wang X. Angew. Chem. Int. Ed. 2017; 56: 832
    • 63a Ito O, Matsuda M. J. Am. Chem. Soc. 1979; 101: 1815
    • 63b Ito O, Matsuda M. J. Am. Chem. Soc. 1982; 104: 1701
  • 64 Denes F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
  • 65 Kharasch MS, Nudenberg W, Mantell GJ. J. Org. Chem. 1951; 16: 524
  • 66 Yu Q, Zhang Y, Wan J.-P. Green Chem. 2019; 21: 3436
  • 67 Ghogare AA, Greer A. Chem. Rev. 2016; 116: 9994
  • 68 Wan JP, Gao Y, Wei L. Chem. Asian J. 2016; 11: 2092
  • 69 Shiraishi Y, Teshima Y, Hirai T. J. Phys. Chem. B 2006; 110: 6257
    • 70a Fox MA, Chen CC. J. Am. Chem. Soc. 1981; 103: 6757
    • 70b Kanno T, Oguchi T, Sakuragi H, Tokumaru K. Tetrahedron Lett. 1980; 21: 467
    • 70c Kuwahara Y, Magatani Y, Yamashita H. Rapid Commun. Photosci. 2015; 4: 19
  • 71 Ayed C, Caire da Silva L, Wang D, Zhang KA. I. J. Mater. Chem. A 2018; 6: 22145
  • 72 Zhang Y, Hatami N, Lange N, Ronge E, Schilling W, Jooss C, Das S. Green Chem. 2020; 22: 4516
  • 73 Su F, Mathew SC, Lipner G, Fu X, Antonietti M, Blechert S, Wang X. J. Am. Chem. Soc. 2010; 132: 16299
  • 74 Bhim A, Sasmal S, Gopalakrishnan J, Natarajan S. Chem. Asian J. 2020; 15: 3104
    • 75a Olchowka J, Colmont M, Kabbour H, Mentré O. J. Alloys Compd. 2017; 709: 373
    • 75b Radosavljevic I, Howard JA. K, Sleight AW. Int. J. Inorg. Mater. 2000; 2: 543
  • 76 Wang X, Li Y, Li Z. Catal. Sci. Technol. 2021; 11: 1000
  • 77 Wang H, Jia R, Hong M, Miao H, Ni B, Niu T. Green Chem. 2021; 23: 6591
    • 78a Yang B, Chen Y, Shi J. Chem. Rev. 2019; 119: 4881
    • 78b Teong SP, Li X, Zhang Y. Green Chem. 2019; 21: 5753
  • 79 Zhang L, Yi H, Wang J, Lei A. Green Chem. 2016; 18: 5122
  • 80 Wang J, Ni B, Niu T, Ji F. Catal. Sci. Technol. 2020; 10: 8458
  • 81 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007
    • 82a Pritzkow W, Rao TS. S. J. Prakt. Chem. 1985; 327: 887
    • 82b Kolle S, Batra S. Org. Biomol. Chem. 2016; 14: 11048
  • 83 Itoh A, Yamaguchi T, Nobuta T, Kudo Y, Hirashima S.-i, Tada N, Miura T. Synlett 2013; 24: 607
  • 84 Park S, Yong WS, Kim S, Lee PH. Org. Lett. 2014; 16: 4468
  • 85 Ragupathi A, Sagadevan A, Lin C.-C, Hwu JR, Hwang KC. Chem. Commun. 2016; 52: 11756
  • 86 Majek M, von Wangelin AJ. Angew. Chem. Int. Ed. 2013; 52: 5919
  • 87 Li J, Neuville L. Org. Lett. 2013; 15: 1752
  • 88 Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
  • 89 Das DK, Pampana VK. K, Hwang KC. Chem. Sci. 2018; 9: 7318
    • 90a Sagadevan A, Lyu P.-C, Hwang KC. Green Chem. 2016; 18: 4526
    • 90b Sagadevan A, Charpe VP, Ragupathi A, Hwang KC. J. Am. Chem. Soc. 2017; 139: 2896
  • 91 Das O, Paine TK. Dalton Trans. 2012; 41: 11476
  • 92 Katta N, Ojha M, Murugan A, Arepally S, Sharada DS. RSC Adv. 2020; 10: 12599
  • 93 Niu TF, Jiang DY, Li SY, Ni BQ, Wang L. Chem. Commun. 2016; 52: 13105
  • 94 Chu C, Zhu Q, Pan Z, Gupta S, Huang D, Du Y, Weon S, Wu Y, Muhich C, Stavitski E, Domen K, Kim JH. Proc. Natl. Acad. Sci. U.S.A. 2020; 117: 6376