Synthesis 2022; 54(12): 2749-2764
DOI: 10.1055/a-1755-3832
short review

Synthetic Approaches for the Construction of Five- and Six-Membered Silaazacycles

Wanshu Wang
,
Lu Gao
,
Zhenlei Song
We are grateful to financial support from the National Natural Science Foundation of China (21921002, 22171191), the Open Research Fund of Chengdu University of Traditional Chinese Medicine Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China (2020LF2003), and the Science and Technology Department of Sichuan Province (2020YFS0186).


Abstract

Silaazacycles (or azasilacycles), containing both nitrogen and silicon atoms, are appealing ring structures in the development of silicon-containing functional molecules. The development of general and efficient methods towards these motifs has therefore attracted considerable attention from synthetic chemists. This short review intends to highlight representative advances in the synthesis of five- and six-membered silaazacycles.

1 Introduction

2 Five-Membered Silaazacycles

2.1 Five-Membered Silaazacycles bearing a 1,2-N/Si Moiety

2.2 Five-Membered Silaazacycles bearing a 1,3-N/Si Moiety

3 Six-Membered Silaazacycles

3.1 Six-Membered Silaazacycles bearing a 1,2-N/Si Moiety

3.2 Six-Membered Silaazacycles bearing a 1,3-N/Si Moiety

3.3 Six-Membered Silaazacycles bearing a 1,4-N/Si Moiety

4 Conclusion



Publication History

Received: 26 December 2021

Accepted after revision: 31 January 2022

Accepted Manuscript online:
31 January 2022

Article published online:
09 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 1b Bains W, Tacke R. Curr. Opin. Drug Discovery Dev. 2003; 6: 526
    • 1c Allred AL, Rochow EG. J. Inorg. Nucl. Chem. 1958; 5: 264
    • 1d Gately S, West R. Drug Dev. Res. 2007; 68: 156
    • 1e Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
    • 1f Min GK, Hernández D, Skrydstrup T. Acc. Chem. Res. 2013; 46: 457
    • 1g Lazareva NF, Lazarev IM. Russ. Chem. Bull. 2015; 64: 1221
    • 1h Rémond E, Martin C, Martinez J, Cavelier F. Chem. Rev. 2016; 116: 11654
    • 1i Fujii S, Hashimoto Y. Future Med. Chem. 2017; 9: 485
    • 1j Ramesh R, Reddy DS. J. Med. Chem. 2018; 61: 3779
    • 1k Daud A, Valkov N, Centeno B, Derderian J, Sullivn P, Munster P, Urbas P, DeConti RC, Berghorn E, Liu Z, Hausheer F, Sullivan D. Clin. Cancer Res. 2005; 11: 3009
    • 1l Pooni PK, Showell GA. Mini-Rev. Med. Chem. 2006; 6: 1169
    • 1m Tacke R, Dörrich S. Top. Med. Chem. 2014; 17: 29
    • 1n Sieburth SM. Top. Med. Chem. 2014; 17: 61
    • 1o Serafini M, Cargnin S, Massarotti A, Tron GC, Pirali T, Genazzani AA. J. Med. Chem. 2021; 64: 4410
    • 1p Perestelo NR, Llanos GG, Reyes CP, Amesty A, Sooda K, Afshinjavid S, Jiménez IA, Javid F, Bazzocchi IL. J. Med. Chem. 2019; 62: 4571
    • 1q Mills JS, Showell GA. Expert Opin. Invest. Drugs 2004; 13: 1149
    • 1r Showell GA, Mills JS. Drug Discovery Today 2003; 8: 551
    • 1s Sieburth SM. ACS Symp. Ser. 1996; 640: 74
    • 1t Mortensen M, Husmann R, Veri E, Bolm C. Chem. Soc. Rev. 2009; 38: 1002
    • 1u Tacke R, Wannagat U. Top. Curr. Chem. 1979; 84: 1
  • 2 Liu B.-M, Gai K, Qin H, Wang J, Liu X.-S, Cao Y, Lu Q, Lu D.-D, Chen D.-Y, Shen H.-Q, Song W, Mei J, Wang X.-J, Xu H.-J, Zhang Y.-S. J. Med. Chem. 2020; 63: 5312
  • 3 Tacke R, Popp F, Müller B, Theis B, Burschka C, Hamacher A, Kassack MU, Schepmann D, Wünsch B, Jurva U, Wellne E. ChemMedChem 2008; 3: 152
  • 4 Shishkina AA, Ivanenko TI, Zarubina NA. Pharm. Chem. J. 1986; 20: 143
    • 5a Farag AT, Ibrahim HH. Birth Defects Res., Part A 2007; 80: 12
    • 5b Katsuda Y, Minamite Y, Vongkaluang C. Insects 2011; 2: 532
    • 6a Woo SJ, Kim Y, Kim YH, Kwon SK, Kim JJ. J. Mater. Chem. C 2019; 7: 4191
    • 6b Liu XY, Tang X, Zhao Y, Zhao DL, Fan J, Liao LS. J. Mater. Chem. C 2018; 6: 1023
    • 6c Nakatsuka S, Gotoh H, Kinoshita K, Yasuda N, Hatakeyama T. Angew. Chem. Int. Ed. 2017; 56: 5087
    • 6d Suzuki R, Tada R, Miura Y, Yoshioka N. J. Mol. Struct. 2016; 1106: 399
    • 6e Sun JW, Baek JY, Kim K.-H, Moon C.-K, Lee J.-H, Kwon S.-K, Kim Y.-H, Kim J.-J. Chem. Mater. 2015; 27: 6675
    • 6f Hayashi H, Nakao H, Miyabayashi T, Murase M. Jpn. J. Appl. Phys. 2013; 52: 05DA13
    • 6g Corey JY, Trankler KA, Braddock-Wilking J, Rath NP. Organometallics 2010; 29: 5708
    • 6h Ito A, Urabe M, Tanaka K. Angew. Chem. Int. Ed. 2003; 42: 921
    • 6i Ikeno T, Nagano T, Hanaoka K. Chem. Asian J. 2017; 12: 1435
  • 7 Voronkov MG, Kirpichenko SV, Abrosimova AT, Albanov AI. J. Organomet. Chem. 1991; 406: 87
  • 8 Seyferth D, Duncan DP, Shannon ML. Organometallics 1984; 3: 579
  • 9 Ojima I, Vidal ES. Organometallics 1999; 18: 5103
  • 10 Nevárez Z, Woerpel KA. Org. Lett. 2007; 9: 3773
  • 11 Anderson LL, Woerpel KA. Org. Lett. 2009; 11: 425
  • 12 Sakurai H, Kamiyama Y, Nakadaira Y. J. Chem. Soc., Chem. Commun. 1978; 80
  • 13 Novák M, Dostál L, Alonso M, De Proft F, Růžička A, Lyčka A, Jambor R. Chem. Eur. J. 2014; 20: 2542
  • 14 Li Q, Driess M, Hartwig JF. Angew. Chem. Int. Ed. 2014; 53: 8471
    • 15a Vivet B, Cavelier F, Martinez J. Eur. J. Org. Chem. 2000; 807
    • 15b Handmann VI, Merget M, Tacke R. Z. Naturforsch., B 2000; 55: 133
    • 15c Vivet B, Cavelier F, Martinez J, Didierjean C, Marraud M, Aubry A. Acta Crystallogr., Sect. C 2000; 56: 1452
    • 16a Cavelier F, Vivet B, Martinez J, Aubry A, Didierjean C, Vicherat A, Marraud M. J. Am. Chem. Soc. 2002; 124: 2917
    • 16b Cavelier F, Marchand D, Mbassi P, Martinez J, Marraud M. J. Pept. Sci. 2006; 12: 621
    • 16c Madicaa K, Nadimpallya KC, Sanjayan GJ. Tetrahedron Lett. 2017; 58: 1568
    • 16d Martin C, Legrand B, Lebrun A, Berthomieu D, Martinez J, Cavelier F. Chem. Eur. J. 2014; 20: 14240
    • 16e Dalkas GA, Marchand D, Galleyrand JC, Martinez J, Spyroulias GA, Cordopatis P, Cavelier F. J. Pept. Sci. 2010; 16: 91
  • 17 Pujals S, Fernandez-Carneado J, Kogan MJ, Martinez J, Cavelier F, Giralt E. J. Am. Chem. Soc. 2006; 128: 8479
  • 18 Dwyer MP, Keertikar KM, Zeng Q, Mazzola RD. Jr, Yu W, Tang H, Kim SH, Tong L, Rosenblum SB, Kozlowski JA, Nair AG. WO 2013039876 A1, 2013
  • 19 Chung JY. L, Shevlin M, Klapars A, Journet M. Org. Lett. 2016; 18: 1812
  • 20 Kirpichenko SV, Abrosimova AT, Albanov AI, Voronkov MG. Russ. J. Gen. Chem. 2001; 71: 1874
    • 21a Panek JS. Silicon Stabilization . In Comprehensive Organic Synthesis, Vol. 1. Trost BM, Fleming I. Pergamon; New York: 1991: 579
    • 21b Fleming I, Barbero A, Walter D. Chem. Rev. 1997; 97: 2063
  • 22 Ushakova IV, Shainyan BA. Mendeleev Commun. 2020; 30: 794
  • 23 Su B, Lee T, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 18032
  • 24 Luo G, Chen LG, Li Y, Fan Y, Wang DY, Yang YF, Gao L, Jiang RT, Song ZL. Org. Chem. Front. 2021; 8: 5941
  • 25 Ogamino J, Mizunuma H, Kumamoto H, Takeda S, Haraguchi K, Nakamura KT, Sugiyama H, Tanaka H. J. Org. Chem. 2005; 70: 1684
  • 26 Fang HQ, Hou WJ, Liu GX, Huang Z. J. Am. Chem. Soc. 2017; 139: 11601
  • 27 Cheeseman GW. H, Greenberg SG. J. Organomet. Chem. 1979; 166: 139
  • 28 Toutov AA, Liu W.-B, Betz KN, Fedorov A, Stoltz BM, Grubbs RH. Nature 2015; 518: 80
  • 29 Shainyan BA, Kirpichenko SV, Kleinpeter E, Shlykov SA, Osadchiy DYu, Chipanina NN, Oznobikhina LP. J. Org. Chem. 2013; 78: 3939
  • 30 Hernández D, Nielsen L, Lindsay KB, López-García MA, Bjerglund M, Skrydstrup T. Org. Lett. 2010; 12: 3528
  • 31 Blaszykowski C, Brancour C, Dhimane AL, Fensterbank L, Malacria M. Eur. J. Org. Chem. 2009; 1674
  • 32 Wang WS, Zhou S, Li LJ, He YH, Dong X, Gao L, Wang QT, Song ZL. J. Am. Chem. Soc. 2021; 143: 11141
  • 33 Barraza SJ, Denmark SE. J. Am. Chem. Soc. 2018; 140: 6668
  • 34 Coelho PJ, Blanco L. Synlett 2001; 1455
  • 35 Aoyama T, Sato Y, Suzuki T, Shirai H. J. Organomet. Chem. 1978; 153: 193
  • 36 Francois C, Boddaert T, Durandetti M, Querolle O, Hijfte LV, Meerpoel L, Angibaud P, Maddaluno J. Org. Lett. 2012; 14: 2074
  • 37 Boddaert T, Francois C, Mistico L, Querolle O, Meerpoel L, Angibaud P, Durandetti M, Maddaluno J. Chem. Eur. J. 2014; 20: 10131
  • 38 Barluenga J, Jiménez C, Nájera C, Yus M. Synthesis 1982; 414
    • 39a Tacke R, Handmann VI, Bertermann R, Burschka C, Penka M, Seyfried C. Organometallics 2003; 22: 916
    • 39b Heinrich T, Burschka C, Warneck J, Tacke R. Organometallics 2004; 23: 361
    • 39c Tacke R, Heinrich T, Bertermann R, Burschka C, Hamacher A, Kassack MU. Organometallics 2004; 23: 4468
    • 39d Heinrich T, Burschka C, Penka M, Wagner B, Tacke R. J. Organomet. Chem. 2005; 690: 33
    • 39e Ilg R, Burschka C, Schepmann D, Wünsch B, Tacke R. Organometallics 2006; 25: 5396
    • 39f Tacke R, Nguyen B, Burschka C, Lippert WP, Hamacher A, Urban C, Kassack MU. Organometallics 2010; 29: 1652
    • 39g Tacke R, Bertermann R, Burschka C, Dörrich S, Fisher M, Müller B, Meyerhans G, Schepmann D, Wünsch B, Arnason I, Bjornsson R. ChemMedChem 2012; 7: 523
    • 39h Fischer M, Tacke R. Organometallics 2013; 32: 7181
    • 39i Geyer M, Wellner E, Jurva U, Saloman S, Armstrong D, Tacke R. ChemMedChem 2015; 10: 911
  • 40 Fang HQ, Xie KX, Kemper S, Oestreich M. Angew. Chem. Int. Ed. 2021; 60: 8542
  • 41 Lühning LH, Rosien M, Doye S. Synlett 2017; 28: 2489
  • 42 Ahmad M, Gaumont AC, Durandetti M, Maddaluno J. Angew. Chem. Int. Ed. 2017; 56: 2464
  • 43 Zhang JB, Park S, Chang S. J. Am. Chem. Soc. 2018; 140: 13209
    • 44a Wilking JB, Corey JY, French LM, Choi E, Speedie VJ, Rutherford MF, Yao S, Xu H, Rath NP. Organometallics 2006; 25: 3974
    • 44b Hayashi H, Murase M, Koizumi T.-a, Ohara K, Miyabayashi T, Kojima M. Bull. Chem. Soc. Jpn. 2010; 83: 1282
    • 44c Ito A, Hata K, Kawamoto K, Hirao Y, Tanaka K, Shiro M, Furukawa K, Kato T. Chem. Eur. J. 2010; 16: 10866
    • 44d Kitamoto Y, Namikawa T, Suzuki T, Miyata Y, Kita H, Sato T, Oi S. Tetrahedron Lett. 2016; 57: 4914
  • 45 Onoe M, Morioka T, Tobisu M, Chatani N. Chem. Lett. 2013; 42: 238
    • 46a Li HH, Wang Y, Yuan K, Tao Y, Chen RF, Zheng C, Zhou XH, Li JF, Huan W. Chem. Commun. 2014; 50: 15760
    • 46b Xu S, Li H, Tang Y, Chen R, Xie X, Zhou X, Xing G, Huang W. Aust. J. Chem. 2016; 69: 419
  • 47 Sato Y, Takagi C, Shintani R, Nozaki K. Angew. Chem. Int. Ed. 2017; 56: 9211