Synlett 2022; 33(14): 1335-1340
DOI: 10.1055/a-1806-6258
cluster
Organic Chemistry in Thailand

2,3-Diaryl-1,1,4,4-tetracyanobutadienes as Colorimetric Sensors for Sulfide Ion in Aqueous Media

Quynh Nguyen Nhu Pham
a   Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
,
Komthep Silpcharu
a   Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
,
Viwat Vchirawongkwin
a   Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
,
Mongkol Sukwattanasinitt
a   Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
b   Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
,
Paitoon Rashatasakhon
a   Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
b   Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
› Author Affiliations
This project was partially supported by the National Nanotechnology Centre (NANOTEC), NSTDA, the Ministry of Science and Technology, Thailand, through its program of the Centre of Excellence Network. Q.N.N.P. thanks the Scholarship Program for ASEAN and Non–ASEAN Countries from Chulalongkorn University.


Abstract

Two diaryl derivatives of 1,1,4,4-tetracyanobuta-1,3-diene were synthesized for use as colorimetric ion sensors in aqueous media. The key synthetic step involved a [2+2]-cycloaddition/retro-cycloaddition between an electron-rich diarylethyne and electron-deficient tetracyanoethene. The compound bearing two sulfonamide groups showed good selectivity toward hydrogen sulfide ion, with a detection limit of 15.5 μM. The use of this sensor for the quantitative analysis of hydrogen sulfide ion in water samples was successfully demonstrated.

Supporting Information



Publication History

Received: 27 January 2022

Accepted after revision: 23 March 2022

Accepted Manuscript online:
23 March 2022

Article published online:
22 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Lacy AR, Vogt A, Boudon C, Gisselbrecht J.-P, Schweizer WB, Diederich F. Eur. J. Org. Chem. 2013; 869
  • 2 Michinobu T, May JC, Lim JH, Boudon C, Gisselbrecht J.-P, Seiler P, Gross M, Biaggio I, Diederich F. Chem. Commun. 2005; 737
  • 3 Michinobu T, Boudon C, Gisselbrecht J.-P, Seiler P, Frank B, Moonen NN, Gross M, Diederich F. Chem. Eur. J. 2006; 12: 1889
  • 4 Kivala M, Boudon C, Gisselbrecht J.-P, Seiler P, Gross M, Diederich F. Chem. Commun. 2007; 4731
  • 5 Jarowski PD, Wu Y.-L, Boudon C, Gisselbrecht J.-P, Gross M, Schweizer WB, Diederich F. Org. Biomol. Chem. 2009; 7: 1312
  • 6 Finke AD, Dumele O, Zalibera M, Confortin D, Cias P, Jayamurugan G, Gisselbrecht J.-P, Boudon C, Schweizer WB, Gescheidt G. J. Am. Chem. Soc. 2012; 134: 18139
  • 7 Chiu M, Jaun B, Beels MT, Biaggio I, Gisselbrecht J.-P, Boudon C, Schweizer WB, Kivala M, Diederich FO. Org. Lett. 2012; 14: 54
  • 8 Michinobu T, Diederich F. Angew. Chem. Int. Ed. 2018; 57: 3552
  • 9 Wang Y, Michinobu T. Bull. Chem. Soc. Jpn. 2017; 90: 1388
  • 10 Li Y, Ashizawa M, Uchida S, Michinobu T. Macromol. Rapid Commun. 2011; 32: 1804
  • 11 Li Y, Ashizawa M, Uchida S, Michinobu T. Polym. Chem. 2012; 3: 1996
  • 12 Michinobu T, Li Y, Hyakutake T. Phys. Chem. Chem. Phys. 2013; 15: 2623
  • 13 Li H.-W, Wang B, Dang Y.-Q, Li L, Wu Y. Sens. Actuators, B 2010; 148: 49
  • 14 Tharmaraj V, Pitchumani K. Anal. Chim. Acta 2012; 751: 171
  • 15 Srivastava P, Ali R, Razi SS, Shahid M, Patnaik S, Misra A. Tetrahedron Lett. 2013; 54: 3688
  • 16 Neupane LN, Park J.-Y, Park JH, Lee K.-H. Org. Lett. 2013; 15: 254
  • 17 Silpcharu K, Sukwattanasinitt M, Rashatasakhon P. RSC Adv. 2019; 9: 11451
  • 18 Helal A, Kim SH, Kim H.-S. Tetrahedron 2010; 66: 9925
  • 19 Kumar A, Chae PS. Anal. Chim. Acta 2017; 958: 38
  • 20 Goh H, Nam TK, Singh A, Singh N, Jang DO. Tetrahedron Lett. 2017; 58: 1040
  • 21 Chen C.-F, Chen Q.-Y. Tetrahedron Lett. 2004; 45: 3957
  • 22 Shang X.-F, Lin H, Lin H.-K. J. Fluorine Chem. 2007; 128: 530
  • 23 Hu F, Cao M, Huang J, Chen Z, Wu D, Xu Z, Liu SH, Yin J. Dyes Pigm. 2015; 119: 108
  • 24 Zimmerman JR, Criss C, Evans S, Ernst M, Nieszala M, Stafford A, Szczerba J. Tetrahedron Lett. 2018; 59: 2473
  • 25 Das S, Sahoo P. Sens. Actuators, B 2019; 291: 287
  • 26 Thanayupong E, Suttisintong K, Sukwattanasinitt M, Niamnont N. New J. Chem. 2017; 41: 4058
  • 27 Lee C.-H, Yoon H-J, Shim J.-S, Jang W.-D. Chem. Eur. J. 2012; 18: 4513
  • 28 Jeong E, Yoon S, Lee HS, Kumar A, Chae PS. Dyes Pigm. 2019; 162: 348
  • 29 Ozdemir A, Erdemir S. J. Photochem. Photobiol., A 2020; 390: 112328
  • 30 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09 . Gaussian, Inc; Wallingford: 2016
  • 31 O’Boyle NM, Tenderholt AL, Langner KM. J. Comput. Chem. 2008; 29: 839
  • 32 EPA/630/R-98/002: Guidelines for the Health Risk Assessment of Chemical Mixtures. Environmental Protection Agency; Washington: 1986. httpss://www.epa.gov/sites/default/files/2014-11/documents/chem_mix_1986.pdf (accessed Apr 18, 2022)
  • 33 The synthesis and characterizations of intermediate compounds 25 are described in the Supporting Information. N-{4-[2-(4-Aminophenyl)-3,3-dicyano-1-(dicyanomethylene)prop-2-en-1-yl]phenyl}methanesulfonamide (P1) and N,N′-[(1,1,4,4-Tetracyanobuta-1,3-diene-2,3-diyl)bis(4,1-phenylene)]dimethanesulfonamide (P2) 2,3-Bis(4-aminophenyl)buta-1,3-diene-1,1,4,4-tetracarbonitrile (5; 0.25 g, 0.74 mmol) was dissolved in CH2Cl2 (15 mL) and pyridine (1.0 mL) at RT. MeSO2Cl (0.13 mL, 1.64 mmol) was then slowly added dropwise from a syringe, and the mixture was allowed to react for 16 h. The crude product was extracted with EtOAc and 3 M aq HCl (×3). The crude residue was purified by column chromatography (silica gel, 1% MeOH in CH2Cl2) to give P1 as a dark-red solid [yield: 0.14 g; (45.5%)] and P2 as a brownish-yellow solid [yield: 0.12 g (33.3%)] P1 FTIR (ATR): 3465, 3368, 3232, 2218, 1601, 1484, 1448, 1335, 1145 cm–1. 1H NMR (500 MHz, acetone-d 6): δ = 9.49 (s, 0.5 H), 7.99 (d, J = 10 Hz, 2 H), 7.86 (d, J = 10 Hz, 2 H), 7.50 (d, J = 10 Hz, 2 H), 6.82 (d, J = 10 Hz, 2 H), 6.56 (s, 1 H), 3.21 (s, 3 H). 13C NMR (125 MHz, acetone-d 6): δ = 167.9, 164.8, 156.9, 145.6, 134.1, 132.5, 126.7, 119.1, 118.8, 115.3, 115.2, 114.7, 113.8, 113.3, 85.6, 75.9, 40.7. HRMS (MALDI-TOF): m/z [M + Na]+ calcd for C21H14N6NaO2S: 437.07966; found: 437.07920. P2 FT (ATR): 3253, 2229, 1602, 1506, 1460, 1331, 1245, 1146 cm–1. 1H NMR (500 MHz, acetone-d 6): δ = 9.51 (s, 2 H), 8.02 (d, J = 10 Hz, 4 H), 7.50 (d, J = 10 Hz, 4 H), 3.20 (s, 6 H). 13C NMR (125 MHz, acetone-d 6): δ = 166.1, 145.8, 132.7, 126.0, 119.1, 113.6, 113.3, 86.5, 40.8. HRMS (MALDI-TOF): m/z [M + 2Na – H]+ calcd for C22H15N6Na2O4S2: 537.03971; found: 537.03815.